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Abstract4

Perennial crops, particularly fruit and tree nut orchards, represent a high-value sector in global5

agriculture, yet the theory of optimal management with production smoothing preferences in6

multi-age-class orchards remains unresolved. While previous analyses examine either single-tree7

models or multi-age orchards without production smoothing, we analyze orchards where growers8

prefer stable production over time and must manage trees of multiple ages simultaneously. This9

paper characterizes optimal tree replacement strategies and their long-run dynamics: when10

to replace trees and whether to replace them simultaneously or partially, and how orchards11

evolve toward steady-state management patterns. We first extend existing two-age-class mod-12

els by characterizing complete transition dynamics, correcting an omission in previous work,13

and developing comparative statics for optimal cycle amplitude. We then introduce a three-14

age-class model that provides the first complete convergence characterization for orchards with15

non-monotonic yield curves and production smoothing preferences. For both models, we prove16

that optimally managed orchards exhibit cyclical production patterns with partial rather than17

simultaneous replacement, and demonstrate finite-time convergence: arbitrary initial age dis-18

tributions converge to optimal cycles within two periods (two-age-class) or a bounded number19

of periods (three-age-class). We identify a ’cycle region’ where initial allocations immediately20

generate optimal cycles. Our results are applicable to other point-input, flow-output capital21

assets with non-monotonic productivity.22
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1 Introduction27

Perennial crops, particularly fruit and tree nut orchards, represent a critically important sector28

in global agriculture due to their substantial economic and environmental contributions, with a29

farm-gate value accounting for at least 0.5 trillion USD in 2022 (FAO, 2024). Despite their im-30

portance, the optimal economic management of orchards has remained understudied, especially31

regarding the combined complexities of multiple age-class structures and non-monotonic yield pat-32

terns. This paper provides the first comprehensive analysis of optimal orchard management that33

fully characterizes the convergence dynamics under both these characteristics, identifying cyclical34

long-run optimal production and demonstrating that optimally managed orchards converge to this35

cycle in finite time—within two periods for the two-age-class model and within a bounded number36

of periods for the three-age-class model. We also derive comparative statics describing how the37

amplitude of the production cycle responds to economic parameters.38

The central research questions addressed in this paper are explicitly as follows: (1) At what age39

should a grower replace orchard trees to maximize the enterprise value? (2) Should the grower40

replace some or all of the trees simultaneously? (3) What is the steady-state of an optimally41

managed orchard, and how rapidly does the orchard converge to this state from an arbitrary initial42

condition?43

These questions are complicated by three key features of perennial crop production that distin-44

guish orchards from conventional capital replacement problems. First, perennial crops exhibit45

non-monotonic ’hump-shaped’ yield profiles over their lifespans, with productivity initially rising,46

then declining in later years. Second, commercial orchards typically contain trees of multiple47

ages rather than homogeneous stands, creating complex interdependencies between replacement48

decisions across different age cohorts. Third, the combination of non-monotonic yields and hetero-49

geneous age structures means that replacement timing affects not only individual tree productivity50

but also the temporal pattern of total orchard output. As a result, optimal replacement strategies51

must account for how timing decisions influence the smoothness of production streams over time.52
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Production-smoothing preferences, reflecting a grower’s inclination to avoid substantial year-to-year53

variations in output, play an important role in orchard management. These preferences arise due to54

various economic and operational factors, such as credit constraints, processing capacity limitations,55

and supply contracts, which incentivize growers to maintain stable production levels. In this study,56

such preferences are modeled using a strictly concave utility function to reflect diminishing marginal57

returns and the grower’s aversion to output fluctuations (Mitra et al., 1991; Feinerman and Tsur,58

2014).59

A distinguishing biological feature of perennial crops, which significantly complicates orchard man-60

agement, is their non-monotonic ("hump-shaped") yield trajectory. Typically, orchard trees experi-61

ence an initial period of yield growth, followed by a plateau at peak production, and eventually yield62

decline as trees age (Siegle et al., 2024; Mitra et al., 1991). This characteristic necessitates careful63

timing in replacement decisions, as optimal replacement must balance the decreasing productivity of64

older trees against the costs of establishing new ones. The presence of multiple age-classes within a65

single orchard further complicates this decision-making process. For instance, the almond orchards66

of California exhibit a wide distribution of tree ages, with trees uniformly distributed from one to67

20 years of age, after which density declines (Luckstead and Devadoss, 2024). Such multiple-age68

structures reflect real-world complexities that cannot be captured by a simplified, identically-aged69

orchard model where all trees are assumed to have the same age and are replaced as a single unit.70

This analysis relates closely to the literature on capital-theoretic models of forestry rotation (Mitra71

and Wan, 1985, 1986; Salo and Tahvonen, 2003, 2004) but differs fundamentally in the timing of72

payoffs. Forestry is typically modeled as a point-input, point-output system, where trees are planted73

at one time and harvested at a later discrete point. In contrast, perennial orchards represent a74

point-input, flow-output system, where trees are planted once but provide a continuous stream75

of outputs over their productive life, necessitating orchard management decisions that emphasize76

ongoing yield optimization rather than a sequence of harvest events (Mitra et al., 1991).77

Methodologically, this paper significantly extends the existing theoretical framework for orchards.78

We first develop a two-age-class model that mirrors the models of Mitra et al. (1991) and Wan79
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(1993). While the qualitative structure of this model remains similar to the earlier literature, we80

contribute three major refinements: we derive comparative statics for the cycle amplitude, provide81

a complete characterization of the transition dynamics to the steady-state, and clarify an omission82

in the solution proposed by Wan (1993). Second, we introduce a new three-age-class model, which83

accommodates non-monotonic yields. We analytically characterize the steady-state of this model,84

showing that while even-aged age structures represent an optimal solution, they are not uniquely85

optimal, with a continuum of initial allocations generating optimal three-period cycles, and prove86

that all initial conditions converge uniformly to a steady-state cycle within a finite, bounded number87

of periods. Our results show that there exists a ’cycle region’ of initial allocations that immediately88

generate optimal three-period cycles, while all other allocations transition to this region. This finite-89

time convergence result represents a significant strengthening of previous neighborhood convergence90

results in the literature.91
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2 Replacing a single tree92

Before analyzing heterogeneous orchard management, we first examine optimal replacement de-93

cisions for individual trees, establishing the foundation for our broader analysis. This approach94

follows the methodology used by Mitra et al. (1991) and Wan (1993), where single-tree models95

illuminate key economic trade-offs in perennial crop management. Understanding these basic prin-96

ciples informs our subsequent analysis of two-age-class orchards (Section 3) and three-age-class97

systems with non-monotonic yields (Section 4), enabling us to characterize optimal management98

strategies with heterogeneous age structures.99

2.1 The yield curve100

The yield curve describes how the yield of the plant changes over its life cycle. We use a deterministic101

yield curve, abstracting from the fact that observed yield curves in empirical applications will be102

stochastic functions of multiple variables, including rainfall, temperature profile throughout the103

growing season, soil type, inputs applied (e.g. fertilizer, pesticide), hours of labor, etc.104

Adapting the single tree replacement framework of Mitra et al. (1991), we specify a generic yield105

curve with four integers demarking the non-bearing period, the period of increasing yield, the period106

of constant yield, and the period of decreasing yields. That is, integers P , Q, R, and T mark the107

end of each period, with 1 ≤ P < Q ≤ R ≤ T , such that108

fP ≤ fQ = . . . = fR ≥ . . . ≥ fT109

and at least one strict inequality between f1 and fQ, where fi is the yield of an i-year old tree. The110

integer P corresponds to the end of the non-bearing period, Q corresponds with the beginning of111

the yield plateau, R with the end of the yield plateau, and T with the end of the tree’s lifespan. A112

stylized yield curve is shown in figure 1.113

In their solution to the single-tree replacement problem, Mitra et al. (1991) require only mono-114
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tonicity for the increasing and decreasing phases of the age-yield relationship.1 Their model allows115

an initial non-bearing period.116

In this paper we focus on two special cases of their general relationship: a two-age class model117

(young trees and old trees), where old trees are less productive than young trees; and a three-118

age-class model (young, mature, and old trees) where the old age-class may be either more or less119

productive than mature trees. For ease of exposition we will refer to these age classes as y, o in120

the two-age-class model (rather than 1, 2), and y,m, o in the three-age-class model (rather than121

1, 2, 3). Moreover, to avoid carrying around an explict planting cost term, assume without loss of122

generality that the yield of young trees, fy, is net of replanting costs.123

Age

Yield

1 P Q N. . . . . . . . .

Non-Bearing

In
cr
ea

si
ng

Constant

D
ecreasing

fP

fQ fR

fN

. . . R

Figure 1: A generic non-monotonic (hump-shaped) yield curve. It is not necessary for a perennial
yield curve to have a non-bearing year.

2.2 The optimal replacement age for a two-age-class tree124

Before studying the orchard problem, we begin by considering the optimal replacement age for a125

single tree. Consider a single plot of land that is continuously replanted. fter harvest, a new tree is126

immediately planted. The tree lives at most two periods, and the grower chooses either a 1-period127

1Mitra et al. (1991) find the optimal replacement for a single tree with the generic yield curve above. However their
non-convergence result (Proposition 5.2) assumes R = T (monotonically increasing yields), while their neighborhood
turnpike theorem (Proposition 5.3) applies more generally
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or 2-period rotation over an infinite horizon. Normalize the price of output to 1. Let β (< 1) be128

the discount factor. The grower’s objective is to maximize the discounted benefits from the stream129

of harvests over an infinite time horizon. The net present value of the tree grown on a 1-period130

rotation is131

NPV1 = fy + βfy + β2fy + β3fy + . . . = fy

1 − β
132

The net present value of the tree grown on a 2-period rotation is133

NPV2 = fy + βfo + β2fy + β3fo + . . . = fy + βfo

1 − β2134

The difference between the two values is135

NPV1 − NPV2 = β(fy − fo)
1 − β2136

Hence if fy > fo the optimal replacement age is y (let i∗ be the optimal replacement age, so (i∗ = y).137

If fy < fo the optimal replacement age is o (i∗ = o). Finally, if fy = fo (i∗1 = y; i∗2 = o). 2138

The optimal rotation age does not depend on discounting in this model. Discounting will affect the139

size of the net present value, but not the relative size of NPV1 and NPV2. This is a special result,140

due to the assumption of a two-age-class model. In a more general model, the optimal single tree141

replacement age is a function of the discount factor, as shown by Mitra et al. (1991) in proposition142

3.1.143

2.3 The optimal replacement age for a three-age-class tree144

While the two-age-class model provides important insights, it cannot capture the crucial biological145

reality of non-monotonic yields where productivity first rises and then falls. However, a three-age-146

class tree is the simplest case that addresses this limitation, allowing us to model the important147

2Theorem 3.1 in Mitra et al. (1991), adapted to our notation, states that there will either be one or two optimal
replacement ages, i∗ or i∗

1 and i∗
2. The age(s) will occur during the declining section of the yield curve. If there are

two optimal replacement ages, then they will differ by one period. That is Q ≤ i∗
1 ≤ i∗

2 ≤ i∗
1 + 1 ≤ T .
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hump-shaped yield patterns common in perennial crops.148

Figure 2 shows the optimal replacement for a single three-age-class tree, normalizing the yield of149

the second age-class to one (fm = 1). The horizontal axis is the yield of the first age-class relative150

to the second, and the vertical axis is the yield of the third age-class relative to the second. The151

optimal replacement age also depends on the discount factor. The dotted line represents parameter152

combinations where a grower with near-zero discount rate would be indifferent between replacement153

strategies, while the dashed line shows the same boundary for a patient grower (β approaching 1).154

Regardless of the discount factor, there are parameter sets giving an optimal replacement age155

of three where the yield of the third age-class is less than the second age-class, that is, with156

non-monotonic yield. Devadoss and Luckstead (2010) identified a declining final period as a key157

feature of perennials. While Mitra et al. (1991) could theoretically analyze the entire i∗ = 3158

region in figure 2, their specific convergence results were limited. They proved non-convergence159

for the monotonically increasing case fo ≥ 1 and only neighborhood convergence generally. Our160

analysis provides definitive finite-time convergence results for the entire i∗ = 3 region, including161

the biologically important hump-shaped yields where f3 < 1.162

These single-tree models show how yield patterns and economic parameters determine optimal163

replacement timing. The two-age-class model demonstrates that when old trees outproduce young164

ones, keeping trees for multiple periods is optimal. The three-age-class model extends this insight to165

account for the biologically realistic hump-shaped yield curves, showing that trees may be optimally166

replaced even after their productivity begins declining. These single-tree optimal replacement ages167

form the foundation for our orchard-level analysis in subsequent sections.168
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1.5
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i∗ = y

i∗ = m

i∗ = o

Legend:

β → 0

β → 1

Figure 2: The optimal replacement age for a three-age-class tree. The yield of a mature tree
is normalized to 1 (fm = 1). The boundaries between the two lower optimal replacement ages
i∗ = y,m and the oldest replacement age i∗ = o depend on the discount factor β. The boundary
between i∗ = 1 and i∗ = 2 is fixed with respect to β.
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3 A two-age-class model169

In this section, we present a two-age-class, infinite horizon model of a perennial orchard. An age170

class refers to all trees planted in the same season. Every period, each cohort advances to the171

next age class. The model allows us to analyze optimal allocation sequences under different yield172

relationships between young and old trees, with particular focus on when old trees have higher yield173

than young trees. We show that optimal sequences are typically cyclical when old trees outperform174

young trees, and examine how cycle characteristics respond to changes in economic and biological175

parameters.176

3.1 A two-age-class, infinite horizon orchard model177

We adapt the forestry model of Salo and Tahvonen (2002) to perennials by changing the production178

function from a point payoff to a flow payoff, and adopt the aging constraint structure from Salo179

and Tahvonen (2004). Instead of including explicit choice variables for replanting, we formulate a180

reduced form dynamic optimization problem (Mitra, 2000). For clarity, throughout this section we181

refer to young trees (i = 1) with subscript y, and old trees (i = 2) with subscript o. The grower’s182

objective is to maximize the discounted benefits from the stream of harvests from each type of tree183

over an infinite time horizon.184

V (xy0, xo0) = max
{xyt,xot}∞

t=1

∞∑
t=1

βtu(ct) (1a)185

subject to186

ct ≡ fyxyt + foxot (1b)187

xo,t+1 ≤ xyt (1c)188

xyt + xot ≤ L (= xy0 + xo0) (1d)189

xit ≥ 0 (1e)190
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where {xyt}∞
t=1 is the sequence of land allocations to young trees, {xot}∞

t=1 is the sequence of land191

allocations to old trees, fy is the yield of young trees, fo is the yield of old trees,3 u(ct) is the benefit192

to the grower from growing/consuming fruit in period t, and L is the area of land available for the193

orchard. We assume that the benefit function exhibits diminishing marginal returns: u′(.) > 0194

and u′′(.) < 0. Finally, ct is the total quantity of fruit available for consumption in period t.195

This model differs from Salo and Tahvonen (2002) in two important ways. First, the definition of196

consumption, ct, represents harvested fruit rather than timber. Second, we added an explicit total197

land constraint. In a forestry model, benefits are obtained only when trees are cut (replaced). In198

contrast, in this orchard model, fruit is harvested before any replanting decisions are made, and199

there is no direct benefit from replacing a tree.200

The aging constraint (1c) ensures that the number of old trees in the next period cannot exceed201

the number of young trees in the current period.4 Old trees cannot be bought and planted; they202

must grow from young trees.203

This optimization problem is convex since the objective function is strictly concave and the con-204

straints are linear. Therefore any solution to the Karush-Kuhn-Tucker conditions will also be a205

solution to the constrained optimization problem posed above.206

The corresponding Lagrangian function is207

L =
∞∑

t=0
βt [u(ct) + λt(xyt − xo,t+1) + ψt(L− xyt − xot)] (2a)208

3These productivities are defined as net of planting costs.
4Wan (1993) calls this constraint the cross-vintage bound. Other authors such as Salo and Tahvonen (2002, 2003,

2004) follow this terminology. We feel that aging constraint is more intuitive.
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The associated KKT conditions for t ≥ 1 are209

β−t ∂L
∂xyt

= u′(ct)fy + λt − ψt ≤ 0 (2b)210

β−t ∂L
∂xot

= u′(ct)fo − λt−1
β

− ψt ≤ 0 (2c)211

λt ≥ 0; λt(xyt − xo,t+1) = 0 (2d)212

ψt ≥ 0; ψt(L− xyt − xot) = 0 (2e)213

xit ≥ 0; xit
∂L
∂xit

= 0 (2f)214

where λt is the Lagrangian multiplier corresponding to the aging constraint and ψt is the Lagrangian215

multiplier corresponding to the total land constraint.216

3.1.1 Interpreting ψt217

The variable ψt represents the marginal increase in the orchard’s value in period t from a permanent218

marginal addition to total land. If ψt is positive, the total land constraint is binding, meaning all219

available land is being used productively. This implies that old trees are immediately replanted at220

the end of their lifespan—land is never left fallow.221

Throughout this paper, we proceed assuming ψt is always positive. This assumption holds when222

productivity coefficients are non-negative, since the marginal utility of harvest is always positive.223

If young tree productivity were negative (which might occur if planting costs are substantial),224

additional land might not be valuable. However, in such a case, the grower would have no incentive225

to maintain the orchard at all.226

3.1.2 Interpreting λt227

The variable λt represents the marginal increase in the orchard’s value in period t from relaxing228

the aging constraint between periods t and t+ 1. This constraint is relaxed by planting additional229

young trees in period t.230

Equation (2b) shows the marginal benefit in period t from increasing the land allocated to young231
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trees. It consists of three components: the immediate marginal benefit from additional young trees232

in period t, the future marginal benefit from additional young trees in period t, and the immediate233

cost of using scarce land.234

β−t ∂L
∂xyt

= u′(ct)fy︸ ︷︷ ︸
Current
marginal
benefit

+λt︸︷︷︸
Future

marginal
benefit

−ψt︸︷︷︸
Marginal
cost of
land

235

Growing an additional young tree in period t allows additional old trees to be grown in period236

t+ 1. Assuming an interior solution (xyt, xot > 0 and rearranging equation (2c) we see that the net237

marginal benefit of an additional old tree in period t+ 1 (valued in period t) is the marginal utility238

from an old tree, less the cost of allocating the land to that tree239

λt = β
(
u′(ct+1)fo − ψt+1

)
240

When the total land constraint binds (ψt > 0), the aging multiplier becomes241

λt = β
(
u′(ct+1)fo − u′(ct+1)fy − λt+1)

)
242

This expression shows that the marginal benefit of an additional old tree in period t + 1 equals243

the marginal benefit of that old tree minus the forgone marginal benefit of a young tree in period244

t+ 1 (which includes both its harvest and the option for having an old tree in period t+ 2). This245

formulation is key for analyzing the stationary solutions to the two-age-class model.246

3.2 Characterizing optimal allocation sequences247

We now characterize optimal allocation sequences for the two-age-class model, first identifing a248

necessary and sufficient condition for a two-period cyclical solution, with the steady-state (one-249

period cycle) emerging as a special case. We focus on interior solutions with a binding total land250

constraint, where xot > 0 and L−xyt −xot = 0, ensuring that equation (2c) is satisfied with equality251

and ψt > 0 for all t.252
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In a two-period cycle, the land allocation will repeat every two periods, so xot = xo,t+2. If the land253

allocations repeat, the harvest values must also repeat, ct = ct+2. To show that such a cycle is254

optimal, we must find a set of non-negative λt to satisfy the KKT conditions.255

Throughout this analysis we assume that old trees are more productive than young trees,5 fo > fy,256

and that 0 < β < 1. This assumption corresponds to the case where the single-tree Faustmann257

optimal replacement age is m. When the Faustmann age is y (i.e., when fy > fo), the orchard258

management problem becomes trivial: the optimal policy is to allocate all land to young trees, since259

they are more productive. Any initial allocation with old trees would transition to an all-young-tree260

allocation in the first period, making the dynamic optimization problem uninteresting261

Proposition 3.1. For all fy < fo and 0 < β < 1, a land allocation sequence {xyt, xot}∞
t=1 that262

follows a two-period cycle is optimal if and only if β ≤ u′(ct+1)
u′(ct) ≤ 1

β for all t.263

Proof. See appendix A.3.1.264

Corollary 1. For all fy < fo and 0 < β < 1, the even-aged sequence with xot = L
2 for all t is an265

optimal solution to the two-age-class orchard management problem.266

Proof. See Appendix A.3.2.267

3.3 Intuition for the existence of cyclical sequences268

Why would cyclical production be optimal when a constant, even-aged allocation is also available?269

To understand the optimality of cycles, consider the marginal value of deviating from an existing270

cycle.271

Let a be the fraction of land allocated to young trees in period t, a = xyt, and, without loss272

of generality, that a < L
2 . Assume that the orchard at time t follows the cyclical land alloca-273

tion, {xt,xt+1, . . .} = {(a, L − a), (L − a, a), . . .}, with the corresponding consumption sequence274

{ct, ct+1, . . .} = {fya+ fo(L− a), fy(L− a) + fo a, . . .}. From the period t, the value of this orchard275

5If fy > fo there cannot be any old trees in a stationary solution to the problem. This yield assumption implies
that equation (2c) must be strictly negative, which implies that xot must be zero by the complementary slackness
condition (2f).
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is276

β−tVt = u(ct) + βu(ct+1) + β2u(ct) + . . .277

This cyclical sequence will be optimal if the grower has no incentive to adjust it. There are two278

ways to adjust: increase young trees in period t+ 1 by replacing young trees at the end of period279

t, or increase young trees in period t+ 2 by replacing young trees at the end of period t+ 1.280

If the marginal change in value from a marginal increase in young trees in both period t + 1 and281

t+ 2 is non-positive, then the cycle will be optimal.282

Focusing on the change in young trees in period t+ 1, the marginal change in value is283

β−t ∂Vt

∂xy,t+1
= 0 + βu′(ct+1)(fy − fo) + β2u′(ct+2)(fo − fy) + . . . (3)284

= β(fo − fy)
1 − β2

(
βu′(ct+2) − u′(ct+1)

)
285

= β(fo − fy)
1 − β2

(
βu′(ct) − u′(ct+1)

)
(because ct = ct+2)286

There is no incentive to adjust the area of young trees in period t+1 if this expression is non-positive287

β−t ∂Vt

∂xy,t+1
≤ 0 ⇔ u′(ct+1)

u′(ct)
≥ β288

Similarly for increasing young trees in period t+ 2289

β−t ∂Vt

∂xy,t+2
≤ 0 ⇔ u′(ct+1)

u′(ct)
≤ 1
β

290

Combining these inequalities gives the same restriction on the ratio of marginal utilities derived291

from the KKT conditions in proposition 3.1.292

Figure 3 shows utility as a function of the area allocated to young trees, xy, assuming all land is293

used. This figure also assumes that a < L
2 . When there are few young trees, xy = a, there are294

many old trees, xo = L − a, harvest is (ct = fya + fo(L − a)) is high, total utility is high, and295

15



marginal utility is low; vice versa when there are many young trees. Proposition 3.1 requires the296

ratio of the marginal utilities between each two periods to be sufficiently close to 1 and the land297

allocations sufficiently close to L
2 .298

The grower faces competing incentives from time and consumption smoothing preferences. Time299

preference (positive discount rate) makes the grower willing to trade more future consumption300

for less present consumption. Consumption smoothing preference gives greater utility from more301

consistent year-to-year consumption.302

These preferences can either conflict or align. The grower can increase utility in period t + 2 by303

replacing young trees at the end of period t, increasing old trees and thus consumption in period304

t+2. However, this reduces utility in period t+1 by decreasing old trees that period. Whether the305

utility gain in t+ 2 outweighs the loss in t+ 1 depends on the discounting effect. Additionally, this306

operation may either increase or decrease consumption variation depending on the orchard’s age-307

structure in period t. If replacing young trees reduces variation, the smoothing benefit is weighed308

against discounting losses. If it increases variation, both effects work against early replacement.309

Section 3.5 explores how initial conditions affect these trade-offs.310

Figure 4 illustrates an example where the grower has eight trees each year with xy,0 = 5
8 . This311

grower is facing discrete replacement decisions, but it serves to illustrate the intuition behind312

whether to replace trees early, which is the same as the marginal case above. Subfigure 4a shows313

the trajectory of this orchard if the grower follows Faustmann replacement only and does not engage314

in smoothing.6 In contrast, subfigure 4b shows the same initial orchard where the grower engages315

in smoothing by replacing one of the young trees. By engaging in early replacement, the grower316

achieves a even-aged orchard in period 2, but has lower production in period 1. Whether this317

operation increases the grower’s utility depends on the discount factor.318

6Faustmann replacement is defined as a replacement strategy where trees are replanted if and only if their age is
equal to i∗, i.e. the age that maximizes the discounted net present value of an infinite sequence of orchards, each
replaced at age i.
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Figure 3: Cyclical production leads to a loss in average utility.

3.4 Comparative statics of cycle amplitude319

The inequalities in proposition 3.1 define a set of land allocations from which the optimal sequence320

of allocations is cyclical. How does the size of this set change with the discount factor, the total321

area of land, and the relative productivity of young and old trees? First we need to identify this322

set, and then calculate comparative statics to examine how it changes with parameters.323

To analyze how this set changes with parameters, we first revisit the relationship between land324

allocations and harvest levels. Let c(xyt) be the harvest when xyt units of land are planted with325

young trees. Using this definition, the inequalities from proposition 3.1 become326

β ≤ u′(c(xy,t+1))
u′(c(xyt))

≤ 1
β

327

In a two-period cycle, one period will have higher harvest than the other. Without loss of generality,328

we can label the periods so that the cycle peak (higher harvest) occurs in period t, which means329

ct > ct+1 and therefore u′(ct) < u′(ct+1) (since u is strictly concave). Given that fo > fy, period330

t has higher harvest because it has a larger allocation of old trees relative to young trees than331
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𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

(a) Without smoothing – no short term loss, but
long run loss from larger cycle.

Replace
this	tree

(b) With smoothing – grower forgoes an
old tree in period 2, but smoother in the
long run.

Figure 4: The age-structure of an orchard without and with smoothing.

period t + 1. Hence the right hand inequality is the relevant inequality. Requiring this inequality332

to be satisfied with equality gives the largest difference in marginal utilities such that a cycle333

will be optimal. Writing the allocation of young trees in terms of deviations from the even-aged334

orchard, xyt = L
2 − ϕ and xy,t+1 = L

2 + ϕ, implicitly defines the maximum cycle amplitude given335

the parameters of the model.336

u′(c(L
2 − ϕ))

u′(c(L
2 + ϕ))

= β (4)337

Using this implicit definition of the maximum cycle amplitude, we can use the implicit function338

theorem to find the comparative statics of the maximum cycle amplitude with respect to the339

parameters of the orchard management problem.340

Proposition 3.2. The comparative statics of the maximum cycle amplitude with respect to the341

parameters β, fy and fo are presented in table 1, where A(c) = −u′′(c)
u′(c) measures the preference for342

consumption smoothing.7343

7This has the same mathematical form as the Arrow-Pratt measure of absolute risk aversion (Pratt, 1964), but in
our deterministic context it captures the strength of preference for avoiding consumption variability over time.
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Proof. See appendix A.3.3344

The preference for consumption smoothing A(c) = −u′′(c)
u′(c) appearing in these comparative statics345

captures how strongly the grower values stable production levels. Larger values of A(c) represent346

a stronger smoothing preference. This parameter reflects the curvature of the utility function and347

governs intertemporal substitution behavior in deterministic models. In our orchard context, higher348

values of A(c) indicate stronger aversion to production variability, with the comparative statics in349

Table 1 reflecting how the intensity of smoothing preferences interacts with other parameters to350

determine optimal cycle amplitude.351

α ∂ϕ
∂α

β (< 0)

fy (> 0) ⇔ A(c( L
2 +ϕ))

A(c( L
2 −ϕ)) <

( L
2 +ϕ)

( L
2 −ϕ)

fo (< 0) ⇔ A(c( L
2 +ϕ))

A(c( L
2 −ϕ)) <

( L
2 −ϕ)

( L
2 +ϕ)

L (> 0) ⇔ A(c( L
2 +ϕ))

A(c( L
2 −ϕ)) > 1

Table 1: Signs of comparative statics of cycle amplitude, ϕ, with respect to β, fy, and fo. Here
A(c) measures the preference for consumption smoothing.

These results provide intuition for how economic parameters affect the willingness to accept pro-352

duction cycles. More patient growers (higher β) always choose smaller cycle amplitudes since they353

place greater weight on future periods, strengthening the smoothing motive relative to immedi-354

ate benefits from optimal replacement timing. The effects of productivity parameters depend on355

how the strength of smoothing preferences varies with consumption levels. When the smoothing356

preference measure is higher at higher consumption levels relative to the consumption difference,357

increasing young-tree productivity leads to larger optimal cycles, while increasing old-tree produc-358

tivity leads to smaller cycles. This reflects how the marginal value of smoothing changes along the359

cycle. Orchard managers with greater utility curvature face a greater trade-off between replacement360

timing and production stability, with the optimal response depending on the specific consumption361
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levels achieved at different points in the cycle.362

3.5 Converging to the cycle363

We now examine how an orchard transitions from an arbitrary initial state to the optimal cycle.364

Proposition 3.3 defines the optimal transition rule between periods, which identifies the trajectory365

to the steady-state from any initial orchard.366

Proposition 3.3. Assuming the land constraint binds every period and letting xot be the land367

allocated to old trees in period t, the optimal transition rule is given by368

xo,t+1 = P (xo,t) =



L
2 + ϕ for xo,t∈[0, L

2 − ϕ)

L− xo,t for xo,t∈[L
2 − ϕ, L

2 + ϕ]

L− xo,t for xo,t∈(L
2 + ϕ,L]

369

where ϕ is the maximum cycle amplitude, as defined in equation (4).370

Proof. See appendix A.3.4.371

Figure 5 shows the optimal transition map between old trees in period t and old trees in period t+1.372

The horizontal axis denotes the area allocated to old trees in period t and the vertical axis denotes373

old trees in period t+1. This diagram is drawn assuming that the total land constraint binds every374

period. The downward sloping dashed line represents the aging constraint, xo,t+1 ≤ L − xot. The375

bold black line represents the optimal transition rule, showing the optimal area allocated to old376

trees in period t+ 1 given an allocation of old trees in period t.377

For allocations of old trees larger than L− ϕ, the aging constraint binds. However, when there are378

few old trees in period t (i.e. xot < L − ϕ), some young trees are replaced at the end of period t379

so xo,t+1 < L− xot. When there are many young trees, the opportunity cost of replacing a young380

tree early is low.381

An implication of this diagram is that any optimal sequence {xt}∞
t=1 will converge to an optimal382

cycle in at most two periods. If the initial orchard has xot < L− ϕ, then an optimal cycle will be383
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reached in the next period. If the initial orchard has xot > L + ϕ, then an optimal cycle will be384

reached in two periods.385

3.6 Comparison to Wan (1993) and forestry models386

Our characterization of the optimal transition rule for a unit-area, two-age-class orchard both387

clarifies and extends earlier vintage-capital results.388

First, in a two-age orchard with higher productivity of old trees fo > fy, Wan (1993, p. 418)389

obtains the "boundary-cycle” policy xo,t = 1 − xo,t−1. Wan’s derivation implicitly assumes linear390

utility so that the replacement shadow price is everywhere positive (the equivalent in our model is391

λt, the Lagrange multiplier on the aging constraint (1c)). Under strictly concave u(·) the shadow392

price is zero whenever the orchard is sufficiently uneven-aged, giving rise to an interior regime that393

Wan’s rule omits, as seen in the three regime transition map in our proposition 3.3. Region I394

(xo,t < L/2 − ϕ) features early replacement of part of the young cohort; the first-order condition395

u′(ct) = βu′(ct+1) with an inactive aging constraint pins the next-period stock at the cycle boundary396

xo,t+1 = L/2 + ϕ. Regions II–III, where λt > 0, coincide with Wan’s downward-sloping aging397

constraint xo,t+1 = L− xo,t.398

Second, our results illuminate how the replacement motive differs between perennial crops and399

forests. In the two-age forestry model of Salo and Tahvonen (2002), utility arises only when timber400

is harvested; standing trees provide no contemporaneous benefit. When the stock of old stands is401

low, marginal harvest utility is high and the optimal map is upward-sloping—part of the young402

cohort is logged to raise current harvest and enlarge the stock of old trees next period. As the old403

tree stock grows, this incentive weakens and the map bends down in a piecewise fashion until it404

follows the aging constraint xo,t+1 = L− xo,t.405

In contrast, in orchards fruit is harvested before any replacement decision, so replacing a young tree406

yields no immediate return; early replacement is valued only for smoothing future harvests. The407

resulting map is flat at xo,t+1 = L/2 + ϕ in Region I and follows the aging constraint thereafter.408

If the initial old-tree stock lies below L/2 − ϕ, this flat segment sets xo,1 = L/2 + ϕ. If instead409
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xo,0 > L/2 + ϕ, the aging-constraint sends the system to xo,1 = L − xo,0 < L/2 − ϕ, and the410

following period applies the flat segment, yielding xo,2 = L/2 + ϕ. Thus every orchard sequence411

with i∗ = 2 enters the two-point cycle {L/2 − ϕ, L/2 + ϕ} in at most two periods, independent412

of parameters. To our knowledge, no other vintage-capital model of perennial crop dynamics has413

documented an explicit bound on convergence to equilibrium. On the other hand, Proposition 3414

of (Salo and Tahvonen, 2002) shows only that forest sequences converge in finite time, with the415

number of periods increasing in both the distance of the initial stock from the cycle and reductions416

in their harvest return parameter a. Orchard adjustment is therefore generally faster and less417

sensitive to initial conditions.418

L/2L
2 − φ L

2 + φ L

L
2 + φ

L

xot

xo,t+1

Old trees in period t

O
ld

tr
ee

s
in

p
er
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d

t
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1

Optimal transition rule

45◦

P (.)

Figure 5: Transition map showing the optimal transition rule (solid line) for old trees in period t
to old trees in period t+ 1 for a two-age-class orchard model. The aging constraint is shown by the
dashed line. The cycle region is given by the set [L

2 − ϕ, L
2 + ϕ].
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4 A three-age-class orchard model with non-monotonic yields419

We now extend the model to include a third age-class, which allows us to capture the biological420

reality of non-monotonic yields in perennial crops. In this model, trees live for three periods before421

dying. The three age-classes, indexed by i, are labeled: young (y), mature (m), and old (o) trees.422

As before, the grower’s objective is to maximize the discounted benefits from the stream of harvests423

from each of type tree over an infinite time horizon. Assume the per-period payoff, u(ct(xt)) is C2,424

with u′(ct) > 0, u′′(ct) < 0. Without loss of generality, normalize the total area of available land,425

L, to 1. See section A.4 for a glossary of notation used in this section.426

V (xy0, xm0, xo0) = max
xt

∞∑
t=1

βtu(ct(xt)) (5a)427

subject to428

ct ≡ fyxyt + fmxmt + foxot429

xm,t+1 ≤ xyt (5b)430

xo,t+1 ≤ xmt (5c)431

xyt + xmt + xot ≤ 1 (5d)432

xit ≥ 0 for i∈{y,m, o} (5e)433

434

The Lagrangian of the reduced problem is435

L =
∞∑

t=1
βt

u(ct) + λ1t(xyt − xm,t+1) + λ2t(xmt − xo,t+1) + ψt(1 − xyt − xmt − xot) +
∑

i∈{y,m,o}
sit(xit)

436

437
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This leads to the KKT conditions for t ≥ 1438

β−t ∂L
∂xyt

= u′(ct)fy + λ1t − ψt − syt = 0 (6a)439

β−t ∂L
∂xmt

= u′(ct)fm − λ1,t−1
β

+ λ2t − ψt − smt = 0 (6b)440

β−t ∂L
∂xot

= u′(ct)fo − λ2,t−1
β

− ψt − sot = 0 (6c)441

λ1t ≥ 0; λ1t(xyt − xm,t+1) = 0 (6d)442

λ2t ≥ 0; λ2t(xmt − xo,t+1) = 0 (6e)443

ψt ≥ 0; ψt(1 − xyt − xmt − xot) = 0 (6f)444

xit ≥ 0; sit(xit) = 0 for i∈{y,m, o} (6g)445

The key distinction of this model is that it allows for hump-shaped yield patterns, where (fm > fy)446

and (fm > fo). This is a common feature of many perennial crops, where productivity first increases447

as trees mature, then decreases in old age. Such non-monotonic yield patterns create more complex448

economic trade-offs than in the two-age-class model.449

We focus on the case where the single-tree Faustmann optimal replacement age is o. When the450

Faustmann age is y, the problem reduces to maintaining only young trees (since they are most451

productive), making the multi-age-class dynamics trivial. When the Faustmann age is m, the long-452

run dynamics reduce to cycling between only young and mature trees - essentially replicating the453

two-age-class model analyzed in the previous section. Only when the Faustmann age is o do we454

obtain the three-period cyclical dynamics that justify the full three-age-class analysis.455

Definition 1 (Faustmann transitions). A Faustmann transition is where the grower replaces all456

trees whose age is greater than or equal to the Faustmann age. For i∗ = o, a Faustmann transition457

simply applies the aging map, F(xy, xm, xo) = (xo, xy, xm). △458
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4.1 Properties of the value function459

Lemma 2 (Basic Properties of the Value Function). Under the assumptions specified above, the460

value function V : S → R has the following properties:461

1. Existence and uniqueness There exists a unique bounded function V satisfying the Bellman462

equation463

V (xt) = max
xt+1∈Γ(xt)

{u(c(xt)) + βV (xt+1)}464

2. Continuity: V is continuous on S465

3. Concavity: V is weakly concave on S466

Proof. Existence, uniqueness, boundedness, and continuity: Define the Bellman operator T on the467

space of bounded continuous functions B(S) by468

(Tf)(xt) = max
xt+1∈Γ(xt)

{u(c(xt)) + βf(xt+1)}469

Since u is bounded on compact sets, S is compact, and Γ(xt) is compact-valued and continuous,470

the operator T is well-defined and maps B(S) into itself. Moreover, T satisfies Blackwell’s sufficient471

conditions for a contraction: it is monotone and satisfies the discounting property with modulus472

β ∈ (0, 1). By Theorem 3.2 in (Stokey et al., 1989), T has a unique fixed point V ∈ B(S),473

establishing existence, uniqueness, boundedness, and continuity.474

Concavity: We show that T preserves concavity. Let f : S → R be bounded and concave. For475

arbitrary x0,x1 ∈ S and λ ∈ [0, 1], define xλ = λx0 + (1 − λ)x1. Let x0
t+1 and x1

t+1 achieve the476

maxima defining (Tf)(x0) and (Tf)(x1), respectively.477

Since the constraint correspondEnce Γ has a convex graph (the constraints are linear), we have478

xλ
t+1 = λx0

t+1 + (1 − λ)x1
t+1 ∈ Γ(xλ). Therefore:479

(Tf)(xλ) ≥ u(c(xλ)) + βf(xλ
t+1)480
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Since u is concave and c is linear in x:481

u(c(xλ)) ≥ λu(c(x0)) + (1 − λ)u(c(x1))482

By concavity of f :483

f(xλ
t+1) ≥ λf(x0

t+1) + (1 − λ)f(x1
t+1)484

Combining these inequalities:485

(Tf)(xλ) ≥ λ(Tf)(x0) + (1 − λ)(Tf)(x1)486

Thus T preserves concavity. Since the zero function is concave and V = limn→∞ Tn0, and since487

concavity is preserved under uniform limits on compact sets (Stokey et al., 1989, , Theorem 4.8488

under weak inequality), V is (weakly) concave.489

Lemma 3 (Properties of the Optimal Policy Correspondence). Let the feasible set correspondence490

Γ : S ⇒ S be defined by the constraints (5b)–(5e), and by assumption the utility function u is491

continuous and strictly increasing. Then the value function,492

V (xt) := max
xt+1∈Γ(xt)

f(xt,xt+1)493

is continuous and the optimal policy correspondence494

ξξξS(xt) := arg max
xt+1∈Γ(xt)

{u(c(xt)) + βV (xt+1)}495

is nonempty, compact-valued, and upper hemicontinuous on the state space.8496

8The superscript S indicates that the policy correspondence is defined across the full state space, S. The remainder
of the proof will focus on a subset of this correspondence.
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Proof. Define the objective function497

f(xt,xt+1) := u(c(xt)) + βV (xt+1)498

where c(xt) = fyxyt + fmxmt + foxot is linear and u(·) is continuous and strictly increasing. By499

Lemma 2, the value function V : S → R is continuous and bounded. Hence, f(xt,xt+1) is continuous500

in both arguments.501

The correspondence Γ : S ⇒ S is defined by the system of linear constraints (5b)–(5e), so each502

constraint is affine and continuous in xt and Γ is non-empty and compact-valued. Therefore, Γ is503

continuous (de la Fuente, 2000, , Theorem 2.2).504

By Berge’s Maximum Theorem (de la Fuente, 2000, , Theorem 2.1), since f(xt,xt+1) is continuous505

in both xt and xt+1, and Γ(xt) is nonempty, compact-valued,506

V (xt) := max
xt+1∈Γ(xt)

f(xt,xt+1)507

is continuous, and the optimal policy correspondence508

ξξξS(xt) := arg max
xt+1∈Γ(xt)

f(xt,xt+1)509

is nonempty-valued, compact-valued, and upper hemicontinuous.510

4.2 Stationary solutions to the three-age-class model511

Our first major result concerns the existence and characterization optimal stationary three-period512

cycles in the three-age-class orchard model, assuming the land constraint is always binding. We513

begin by listing the dual variables generated by a candidate cycle {xt,xt+1,xt+2, . . .}.514
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
λ1t

λ1,t+1

λ1,t+2

 = β

1 − β3


β2(fy − fo) (fm − fy) β(fo − fm)

β(fo − fm) β2(fy − fo) (fm − fy)

(fm − fy) β(fo − fm) β2(fy − fo)




u′(ct)

u′(ct+1)

u′(ct+2)

 (7a)515


λ2t

λ2,t+1

λ2,t+2

 = β

1 − β3


β2(fm − fo) (fo − fy) β(fy − fm)

β(fy − fm) β2(fm − fo) (fo − fy)

(fo − fy) β(fy − fm) β2(fm − fo)




u′(ct)

u′(ct+1)

u′(ct+2)

 . (7b)516

Complementarity requires sit xit = 0 and sit ≥ 0. Because the matrices in (7) depend continuously517

on xt, all dual variables are continuous functions of the state.518

Proposition 4.1 (Steady states of the three-age-class model). Assume β ∈ (0, 1) and a three-age-519

class yield vector f = (fy, fm, fo) such that the single-tree Faustmann optimal replacement age is520

unique and equal to i∗ = o, i.e.521

fy

1 − β
<
fy + βfm + β2fo

1 − β3 ,
fy + βfm

1 − β2 <
fy + βfm + β2fo

1 − β3 . (8)522

Denote the simplex by ∆2 :=
{
x ∈ R3 : xy + xm + xo = 1, xi ≥ 0 for i∈{y,m, o}

}
and the aging523

map by F(xy, xm, xo) = (xo, xy, xm).524

1. Even-Aged optimum: The allocation x̄ =
(

1
3 ,

1
3 ,

1
3

)
is optimal.525

2. Local 3-cycles: There exists ε > 0 and an open ball U := {x ∈ ∆2 : ∥x − x̄∥ < ε} such that526

every x ∈ U generates the optimal 3-period cycle {x,Fx,F2x, . . .}.527

3. Cycle region: Define the cycle region528

K0 :=
{

x ∈ ∆2 : the 3-cycle {x,Fx,F2x} satisfies all KKT conditions
}

529
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Equivalently,530

K0 :=


x ∈ ∆2 :

λ1(x,Fx,F2x) ≥ 0

λ2(x,Fx,F2x) ≥ 0

s(x,Fx,F2x) ≥ 0


531

where λ1,λ2 are the 3 × 1 vectors from (7a) and (7b), and s represents all slack variables across532

the cycle.533

Then K0 is closed and contains both x̄ and U . Moreover, for any initial allocation x ∈ ∆2, the534

3-cycle {x,Fx,F2x, . . .} is optimal if and only if x ∈ K0.535

Proof. By Lemma 2, the value function V is weakly concave. The constraints defining the dynamic536

optimization problem—aging constraints (5b)–(5c), land constraint (5d), and non-negativity con-537

straints (5e)—are all linear. Since the Linear Independence Constraint Qualification (LICQ) is538

satisfied on S, and the objective is concave, the KKT conditions (6) are both necessary and suffi-539

cient for optimality in this problem.540

Even-Aged optimum: Consider the even-aged allocation x̄ =
(

1
3 ,

1
3 ,

1
3

)
. The corresponding 3-cycle541

is {x̄, x̄, x̄} since F(x̄) = x̄. All three periods have equal consumption:542

ct = ct+1 = ct+2 = 1
3(fy + fm + fo) =: c̄543

Therefore, u′(ct) = u′(ct+1) = u′(ct+2) = u′(c̄).544
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From (7a):545


λ1t

λ1,t+1

λ1,t+2

 = βu′(c̄)
1 − β3


β2(fy − fo) (fm − fy) β(fo − fm)

β(fo − fm) β2(fy − fo) (fm − fy)

(fm − fy) β(fo − fm) β2(fy − fo)




1

1

1

 (9)546

= βu′(c̄)
1 − β3


∆1

∆1

∆1

 (10)547

where ∆1 = (fm − fy) + β(fo − fm) + β2(fy − fo). Under the Faustmann condition (8), ∆1 > 0, so548

all three components λ1t, λ1,t+1, λ1,t+2 > 0.549

Similarly for λ2 from (7b):550


λ2t

λ2,t+1

λ2,t+2

 = βu′(c̄)
1 − β3


∆2

∆2

∆2

551

where ∆2 = (fo − fy) + β(fy − fm) + β2(fm − fo) > 0 under the i∗ = 3 assumption.552

From (??) evaluated at x̄, all slack variables equal zero since xi = 1
3 > 0: sy = sm = so = 0 for553

all three periods. All aging and land constraints bind with equality at x̄, and all non-negativity554

constraints are inactive (xi > 0), so complementary slackness conditions are satisfied. Since all555

KKT conditions (6) are satisfied and the problem is concave, the even-aged allocation x̄ is optimal.556

Local 3-cycles: The maps x 7→ λ1(x,Fx,F2x), x 7→ λ2(x,Fx,F2x), and x 7→ s(x,Fx,F2x) are557

continuous because the consumption functions ct(x) = fyxy + fmxm + foxo, ct+1(Fx), ct+2(F2x)558

are linear, hence continuous, the utility function u′(·) is continuous by assumption, and the matrix559

operations and slack variable computations are continuous.560

At x̄, all dual variables are strictly positive (λ1i > 0, λ2i > 0 for all i) and all primal variables are561

strictly feasible (xj > 0 for all j). By continuity, there exists ε > 0 such that for the open ball562
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U := {x ∈ ∆2 : ∥x − x̄∥ < ε}, all constraint inequalities defining K0 remain satisfied. For any563

x ∈ U , we must verify that the 3-cycle {x,Fx,F2x} satisfies the complete KKT system (6).564

For x ∈ U , since λ1i > 0 and λ2i > 0 for all i by continuity from x̄, complementary slackness565

requires the aging constraints to bind:566

λ1t(xyt − xm,t+1) = 0 ⇒ xm,t+1 = xyt (11)567

λ2t(xmt − xo,t+1) = 0 ⇒ xo,t+1 = xmt (12)568

This forces optimal transitions to follow the aging map F , so the optimal trajectory is {x,Fx,F2x}.569

Since xj > 0 for all j in U , the non-negativity constraints are inactive (sj = 0 for all j).570

With aging constraints binding (xm,t+1 = xyt, xo,t+1 = xmt) and slack variables zero (sj = 0), the571

first-order conditions (6a)–(6c) reduce to the matrix equations (7a) and (7b), which are satisfied572

for the 3-cycle by definition of U . Since the complete KKT system is satisfied and the optimization573

problem is concave with linear constraints, the 3-cycle is optimal.574

Cycle region: K0 is defined as the intersection of sets of the form {x : gi(x) ≥ 0} where each gi575

represents a constraint function (components of λ1, λ2, or s). Since each gi is continuous, each set576

{x : gi(x) ≥ 0} is closed as the preimage of the closed set [0,∞). The intersection of finitely many577

closed sets is closed, so K0 is closed. By construction from the previous parts, x̄ ∈ K0 and U ⊂ K0.578

If x ∈ K0, then by definition the 3-cycle {x,Fx,F2x} satisfies all KKT conditions across all three579

periods. Since the dynamic optimization problem has a concave objective (Lemma 2) and linear580

constraints, the KKT conditions are sufficient for optimality. Therefore, the 3-cycle is optimal.581

If the 3-cycle {x,Fx,F2x} is optimal for the dynamic optimization problem, then by the necessary582

conditions for optimality, it must satisfy the KKT conditions (6) at each period of the cycle. This583

means all constraint inequalities defining K0 must hold, hence x ∈ K0.584

This result establishes that the even-aged orchard (with equal land allocated to each age class)585

is optimal, but it is not the only optimal solution. In fact, there exists a continuum of initial586
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allocations (the cycle region, K0) that generate optimal three-period cycles. This is analogous to587

the cycle region we found in the two-age-class model, but with a three-period cycle structure.588

4.3 Convergence in the three-age-class model589

Our second major result concerns how orchards with arbitrary initial age distributions converge590

to optimal cycles. We combine results from all four ridge segments to prove that every allocation591

reaches K0 within N = 6+N1+N2 periods. The proof accounts for all starting locations: allocations592

not on the ridge reach it within three periods, then follow optimal transitions from the ridge.593

Proposition 4.2. For the problem defined by conditions (5a)-(5e), there exists N = 6 + N1 + N2594

such that the optimal trajectory starting from any x0 ∈ ∆2 converges to K0 in at most N periods595

(N1 is defined in Corollary 14 and N2 is defined in Corollary 26).596

The convergence proof is based on understanding the geometry of optimal transitions in the state597

space, which is represented by the simplex of possible land allocations.598

The core of the proof is to manually construct the optimal policy function using Faustmann transi-599

tions (xt+1 = Fxt) and ’ridge’ transitions, where the ’ridge’ is defined as the set of value maximizing600

allocations of old trees for each level of xm. The optimal path from any initial allocation is char-601

acterized as follows. First, for any initial allocation outside the cycle region and not on the ridge,602

the optimal policy brings the orchard to the ridge within at most 3 periods. Second, once on the603

ridge, the optimal policy follows a structured transition path that we fully characterize, eventually604

entering the cycle region (K0) in at most N1 +N2 + 3 periods.605

4.3.1 Restricting focus to only replacing mature trees606

This subsection establishes that under hump-shaped yields, the aging constraint xm,t+1 ≤ xyt binds607

with equality whenever xmt > 0. The proof uses the first-order conditions and the assumption that608

the Faustmann age is o (implying fm > fy and fm > fo) to show it is never optimal to replace young609

trees early. This result reduces the optimization problem to choosing xo,t+1 given xm,t+1 = xyt,610

allowing us to focus exclusively on decisions about mature tree replacement.611

Lemma 4. Consider the dynamic forestry problem with hump-shaped yields satisfying fm > fy,612

32



fm > fo. If xmt > 0, then the aging constraint xm,t+1 ≤ xyt binds with equality.613

Proof. From the first-order conditions (6b) and (6c), we have:614

u′(ct)fm − λ1,t−1
β

+ λ2t − ψt − smt = 0 (13)615

u′(ct)fo − λ2,t−1
β

− ψt − sot = 0 (14)616

Subtracting equation (14) from equation (13) yields:617

λ1,t−1
β

= u′(ct)(fm − fo) + λ2t + λ2,t−1
β

− smt + sot618

Since xmt > 0 by assumption, the boundary constraint for mature trees is non-binding, implying619

smt = 0 by complementary slackness. Under the hump-shaped yield assumption, fm > fo, and620

since u′(ct) > 0, we have u′(ct)(fm − fo) > 0.621

Given that λ2t ≥ 0, λ2,t−1 ≥ 0, and sot ≥ 0, it follows that:622

λ1,t−1
β

= u′(ct)(fm − fo) + λ2t + λ2,t−1
β

+ sot > 0623

Therefore, λ1,t−1 > 0. By the complementary slackness condition λ1,t−1(xyt − xm,t+1) = 0, this624

implies xyt − xm,t+1 = 0, establishing that the aging constraint binds with equality.625

Since Lemma 4 applies almost everywhere, to streamline notation we will often write the triple626

(xy, xm, xo) as (xm, xo) with the understanding that xy is implicitly defined by the condition xy =627

1 − xm − xo.628

4.3.2 Defining transitions629

Having established that only mature trees are replaced, we formalize the restricted transition set630

Γr(xt) and introduce the ridge correspondence R(xm), which maps each mature tree allocation to631

the value-maximizing old tree allocations on the iso-mature set M(xm). The ridge R constitutes632
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the optimal policy surface that trajectories seek to reach. We define the optimal transition function633

that chooses ridge transitions when R(xyt) ∩ [0, xmt] ̸= ∅ and Faustmann transitions via the aging634

map F otherwise.635

Definition 2. Restricted Transition Sets636

If the young-to-mature aging constraint binds with equality, xm,t+1 = xyt, the transition set avail-637

able to the grower from an allocation xt = (xyt, xmt, xot) is638

xy,t+1 = 1 − xm,t+1 + xo,t+1639

xm,t+1 = xyt640

0 ≤xo,t+1 ≤ xmt641

Let Γr(xt) denote the set of allocations satisfying (15). That is, xt+1∈Γr(xt) ⊂ Γ(xt). This set can642

be drawn on the simplex as an iso-mature (horizontal) line extending from the xo = 0 boundary643

towards the xy = 0 boundary of the simplex. Figure 7 shows five example intital allocations and644

their restricted transition sets. △645

Definition 3. The “Ridge”: Correspondence of optimal xo given xm646

Fix xm∈[0, 1]. The iso-mature set is M(xm) = {x∈∆2 : xmt = xm, 0 ≤ xot ≤ 1 − xm}.647

Since the value function is weakly concave by Lemma 2, the set of maximizers may be non-singleton.648

Define the correspondence of optimal old-tree areas as649

R(xm) = {xo : (xm, xo) ∈ arg max
(xm,xo)∈M(xm)

V (xm, xo)}650

That is, R(xm) maps the mature-tree share xm to the set of optimal old-tree shares xo, constrained651

on the M(xm) line. A selection r(xm) ∈ R(xm), or, if unambiguous, just r, is an arbitrary optimal652

value of xo for the given xm.653

From Lemma 3, the correspondence R(xm) is non-empty, compact-valued, and upper hemicontin-654
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uous. Since R(xm) is compact-valued, it attains its maximum and minimum values; denote these655

by r(xm) = maxR(xm) and r(xm) = minR(xm).656

The ridge, R, is defined as the graph of the correspondence R:657

R = {(xm, xo) : xm ∈ [0, 1], xo ∈ R(xm)}658

Since R is non-empty, compact-valued, and upper hemicontinuous, and the domain [0, 1] is compact,659

the ridge R is non-empty, compact, and closed.660

For a given mature tree allocation xm, the graph slice at xm is the set of all allocations on the ridge661

with that mature component:662

R(xm) := {(1 − xm − xo, xm, xo) : xo ∈ R(xm)}663

This represents the portion of the ridge R corresponding to a specific level of mature trees. Note664

the relationships: a selection r ∈ R(xm) corresponds to the allocation (1 −xm − r, xm, r) ∈ R(xm),665

and the complete ridge is the union R = ⋃
xm∈[0,1] R(xm).666

We call this correspondence the ’ridge’ because when plotted as a surface over the simplex, the667

value function V (xm, xo) exhibits a ridge-like peak along the graph of R(xm), where the value is668

maximized for each level of mature trees (see Figure 8). △669

Figure 6 shows the transition set (where both young and mature trees can be replaced) and the670

restricted transition set (where only mature trees are replaced) from an example allocation. The671

example allocation is a = (0.2, 0.2, 0.6). Assuming that either or both of young and mature trees672

can be replaced, if no young or mature trees are replaced, a will make a Faustmann transition to the673

allocation (0.6, 0.2, 0.2); if all young and mature trees are replaced, a will transition to (1, 0, 0); if674

only young trees are replaced, a will transition to (0.8, 0, 0.2); and if only mature trees are replaced,675

a will transition to (0.8, 0.2, 0). Any allocation in the set A can be reached as a transition from a676

by a convex combination of replacing young and mature trees. Assuming that only mature trees677
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can be replaced, allocation a can transition to any allocation on the line segment A, a subset of678

the region A.679

Figure 6: From allocation a, the unrestricted transition set is the shaded parallellogram A, i.e.
Γ(a) = A, and the restricted transition set is the line segment A, i.e. Γr(a) = A.

Definition 4. Optimal Restricted Transition Correspondence: Ridge and Faustmann Transitions680

The optimal restricted transition from state xt depends on whether the ridge correspondence in-681

tersects with the feasible transition set.682

Recall that the restricted transition set from xt = (xyt, xmt, xot) is683

Γr(xt) = {(xy,t+1, xm,t+1, xo,t+1) : xm,t+1 = xyt, xy,t+1 = 1 − xyt − xo,t+1, 0 ≤ xo,t+1 ≤ xmt}684

Since the aging constraint binds with xm,t+1 = xyt, the grower chooses xo,t+1 to maximize value685

given that period t+1 will have xyt mature trees. The ridge correspondence R(xyt) provides exactly686

these value-maximizing old tree allocations for the future mature tree level. The feasible range for687
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Figure 7: Example restricted transition sets. The restricted transition set of allocation a is line
segment A, Γr(a) = A. Similarly, Γr(b) = A+B, Γr(c) = A+B+C, Γr(d) = D, and Γr(e) = E. As
an allocation decreases its old allocation along an iso-young line (moves up), it’s restricted transition
set remains on the same iso-mature line, but becomes longer (a to b to c). As an allocation decreases
its old allocation along an iso-mature line (moves right), its restricted transition set moves to a
higher iso-mature line, but remains the same length (b to d to e).

old trees in the next period is [0, xmt]. The optimal transition function is:688

x∗
t+1 = ξξξ(xt) (16)689

=

 Any xt+1 ∈ R(xyt) ∩ Γr(xt) If R(xyt) ∩ [0, xmt] ̸= ∅ (Ridge transition)

Fxt If R(xyt) ∩ [0, xmt] = ∅ (Faustmann transition)
690

where F(xy, xm, xo) = (xo, xy, xm) is the aging map and R(xm) is the correspondence of value-691

maximizing allocations on the iso-mature set M(xm).692

When a ridge transition is feasible, the grower can reach the ridge by choosing any allocation in693

R(xyt) ∩ Γr(xt), which involves replacing some mature trees to achieve the value-maximizing old694

tree allocation for the next period’s mature tree level. Equivalently, since R(xyt) ⊆ [0, 1 − xyt], a695

ridge transition is feasible if and only if R(xyt) ≤ xmt.696
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When a Faustmann transition is optimal, the ridge is not reachable within the feasible transition697

set, so the grower follows the aging map F . △698

4.3.3 Characterizing K0699

This subsection characterizes the cycle region K0 as the set of allocations generating optimal three-700

period cycles satisfying all KKT conditions. We prove that bd(K0) consists of three curves that701

are images of each other under F , with one curve, named R3, coinciding with the ridge where702

λ2,t+2 = 0. We establish that R(xm) is singleton-valued within K0 due to strict concavity within703

this region, and that no ridge points lie outside K0 for the relevant domain D.704

[Domain of Ridge Intersection with the λ2,t+2 = 0 Boundary of K0] Let K0 denote the cycle region705

from Proposition 4.1. The subset706

D = {xm ∈ [0, 1] | M(xm) ∩ {x ∈ K0 : λ2,t+2(x) = 0} ̸= ∅}707

collects all mature shares whose iso-mature line intersects the λ2,t+2 = 0 boundary of K0.708

Lemma 5 (Strict Concavity on Interior Ridge Slice). If xm ∈ D, then V (xm, xo) is strictly concave709

on the set K0 ∩ M(xm), and the ridge correspondence R(xm) is a singleton.710

Proof. From Proposition 4.1, the value function on K0 satisfies:711

V (xt)|xt∈K0
= 1

1 − β3

[
u(ct) + βu(ct+1) + β2u(ct+2)

]
(17)712

where ct = c(xt), ct+1 = c(Fxt), and ct+2 = c(F2xt).713

For x = (xm, xo) ∈ K0 ∩ M(xm), the first derivative of V with respect to xo is714

∂V

∂xo
= 1

1 − β3

[
u′(ct)(fo − fy) + βu′(ct+1)(fy − fm) + β2u′(ct+2)(fm − fo)

]
.715
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From equation (7b) and the KKT conditions, we have:716

β
∂V

∂xo
= λ2,t+2(xo) ⇒ ∂V

∂xo
= λ2,t+2(xo)

β
≥ 0.717

Equality holds if and only if x lies on the λ2,t+2 = 0 boundary of K0.718

The second derivative is:719

∂2V

∂x2
o

= 1
1 − β3

[
u′′(ct)(fo − fy)2 + βu′′(ct+1)(fy − fm)2 + β2u′′(ct+2)(fm − fo)2] < 0,720

using u′′ < 0 and the strict inequalities fm > fy, fm > fo from the Faustmann i∗ = 3 assumption.721

Therefore, V (xm, xo) is strictly concave on the compact domain K0 ∩ M(xm) and attains a unique722

maximum. Hence R(xm) is a singleton in K0.723

Lemma 6 (No Ridge Points Outside K0). Let xm ∈ D. Then R(xm) ⊆ K0. That is, no point in724

R(xm) lies outside K0.725

Proof. By definition of D, there exists an element of R(xm) that lies in K0. By Lemma 5, R(xm) is726

singleton within K0, and since ∂V
∂xo

≥ 0 on K0 ∩ M(xm) with equality at the λ2,t+2 = 0 boundary,727

this K0 element must be the minimum selection of R(xm). Therefore, we can write it as r(xm),728

where (xm, r(xm)) ∈ K0.729

Observe that r ̸= 0, sinceK0 also contains interior points of M(xm) (Proposition 4.1) and V
(
xm, xo

)
730

is strictly concave on K0 ∩ M(xm) (Lemma 5), the boundary value at xo = 0 is strictly dominated.731

Moreover, if r = 1 − xm, R must be singleton since r is the minimum of R. Hence non-singleton732

R are only possible for 0 < r < 1 − xm. We now assume 0 < r(xm) < 1 − xm, and show that no733

δ > 0 can exist such that r(xm) + δ ∈ R(xm) \K0.734

Fix an interior r and assume towards a contradiction that there exists some r(xm) ∈ R(xm) such735

that (xm, r(xm)) /∈ K0. Since R(xm) is compact-valued (Lemma 3), we can write r(xm) = r(xm)+δ736
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for some δ > 0, so that737

xt = (xmt, r(xmt) + δ) ∈ R(xmt) \K0.738

Consider the following four exhaustive cases:739

Case 1: First transition is to the ridge. Let r(xm,t+1) be a selection from R(xm,t+1). Then:740

xt+1 = (xm,t+1, r(xm,t+1)), xm,t+1 = 1 − xmt − r(xmt) − δ.741

Since R is upper hemicontinuous and K0 is interior, r(xm,t+1) > 0. Hence, the transition is interior.742

By Benveniste-Scheinkman:743

∂V

∂xo

∣∣∣∣
xt

= u′(ct)(fo − fy) = 0 ⇒ fo = fy,744

contradicting the Faustmann i∗ = o conditions.745

Case 2: First is Faustmann, second is ridge. Let r(xm,t+2) be a selection from R(xm,t+2). Then:746

xt+1 = F(xt), xt+2 = (xm,t+2, r(xm,t+2)), xm,t+2 = r(xmt) + δ.747

The transition is interior. Let:748

h(xo) := (fo − fy)u′(ct(xo)) + β(fy − fm)u′(ct+1(xo)) + β2(fm − fo)u′(ct+2(xo))749

h corresponds to 1−β3

β λ2,t+2(xo). Then:750

0 = u′(ct)(fo − fy) + βu′(ct+1)(fy − fm) + β2 ∂V

∂xm

∣∣∣∣
(xm,t+2,r(xm,t+2))

.751
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Rearranging:752

∂V

∂xm

∣∣∣∣
(xm,t+2,r(xm,t+2))

= 1
β2(fm − fo)

[
h(r(xmt) + δ) −

(
u′(ct)(fo − fy) + βu′(ct+1)(fy − fm)

)]
> 0,753

a contradiction.754

Case 3: Two Faustmann transitions, then ridge.755

xt+2 = F2(xt) = (xmt, r(xmt) + δ, 1 − xmt − r(xmt) − δ).756

Then:757

0 = u′(ct)(fo − fy) + βu′(ct+1)(fy − fm) + β2u′(ct+2)(fm − fo) = h(r(xmt) + δ).758

But h is strictly decreasing and h(r(xmt)) = 0, so this contradicts strict monotonicity.759

Case 4: Three Faustmann transitions. xt+3 = F3(xmt) = xt implies xt ∈ K0, contradicting the760

assumption.761

Hence, no such δ > 0 exists.762

[Uniqueness of Ridge Correspondence on the λ2,t+2 Boundary of K0] Let xm ∈ D. Then the ridge763

correspondence R(xm) is a singleton, and the unique ridge allocation lies in K0.764

Proof. By definition of D, we have M(xm)∩K0 ̸= ∅. Lemma 5 establishes that V is strictly concave765

on the compact set K0 ∩ M(xm), ensuring a unique maximum exists. By Lemma 6, no point in766

R(xm) lies outside K0, so the unique ridge allocation must lie within K0. Therefore, R(xm) is a767

singleton for all xm ∈ D.768

Definition 5. Largest allocation of mature-aged trees intersecting the λ2,t+2 boundary769

Let x̄m := supD, where D is the set of mature shares whose iso-mature lines intersect the λ2,t+2 = 0770

boundary of K0 (as defined above).771
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Since K0 is closed and bounded (hence compact) and λ2,t+2 is continuous, the set {x ∈ K0 :772

λ2,t+2(x) = 0} is compact. The projection of a compact set is compact, so D is a compact subset773

of [0, 1]. Therefore, the supremum is attained: x̄m = maxD. △774

Lemma 7 (Location of F(x̄m, r̄) on the λ2,t+2 Boundary). Let x̄m denote the maximum value of775

xm such that M(xm) ∩K0 ̸= ∅, and let r̄ be the corresponding ridge value. Then:776

1. The allocation (1 − x̄m − r̄, x̄m) lies on the ridge and on the λ2,t+2 = 0 boundary of K0.777

2. The value 1 − x̄m − r̄ is the minimum element of D.778

Proof. Part 1 : By definition of x̄m, we have (x̄m, r̄) ∈ K0. Since K0 is the set of allocations779

generating optimal 3-cycles, the aging map transition from (x̄m, r̄) must also lie in K0. The aging780

map F applied to (x̄m, r̄) gives F(x̄m, r̄) = (1 − x̄m − r̄, x̄m). Therefore, (1 − x̄m − r̄, x̄m) ∈ K0.781

We show that x̄m is the largest xo value on M(1 − x̄m − r̄) within K0. Suppose there exists δ > 0782

such that (1−x̄m−r̄, x̄m+δ) ∈ K0. Then F2 applied to this allocation yields F2(1−x̄m−r̄, x̄m+δ) =783

(x̄m + δ, 1 − x̄m − r̄). This implies (x̄m + δ, 1 − x̄m − r̄) ∈ K0, so M(x̄m + δ) ∩K0 ̸= ∅, contradicting784

the maximality of x̄m.785

By Corollary 4.3.3, since (1− x̄m − r̄, x̄m) is the value-maximizing allocation on M(1− x̄m − r̄)∩K0,786

we have (1 − x̄m − r̄, x̄m) ∈ R(1 − x̄m − r̄), which gives R(1 − x̄m − r̄) = x̄m. Since x̄m represents787

the maximum xo value along its iso-mature line within K0 and this maximum is achieved at a ridge788

point, the allocation (1 − x̄m − r̄, x̄m) must lie on the boundary of K0 where λ2,t+2 = 0.789

Part 2 : We prove 1 − x̄m − r̄ = minD by contradiction. Suppose there exists x′
m < 1 − x̄m − r̄ such790

that x′
m ∈ D. Then there exists (x′

m, x
′
o) on the λ2,t+2 = 0 boundary of K0. Since (x′

m, x
′
o) ∈ K0,791

the complete 3-cycle must lie in K0:792

(x′
m, x

′
o) ∈ K0793

F(x′
m, x

′
o) = (1 − x′

m − x′
o, x

′
m) ∈ K0794

F2(x′
m, x

′
o) = (x′

o, 1 − x′
m − x′

o) ∈ K0795
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From the third element of the 3-cycle, F2, we have M(x′
o) ∩ K0 ̸= ∅, which by definition of x̄m796

requires x′
o ≤ x̄m.797

Since x′
m < 1−x̄m−r̄, we have 1−x′

m > x̄m+r̄. Therefore, 1−x′
m−x′

o > x̄m+r̄−x′
o ≥ x̄m+r̄−x̄m = r̄798

From the second element of the 3-cycle, we have (1−x′
m −x′

o, x
′
m) ∈ K0 with 1−x′

m −x′
o > r̄ ≥ x̄m,799

where the last inequality follows from the fact that (x̄m, r̄) ∈ K0 lies on the ridge. This means800

M(1−x′
m −x′

o)∩K0 ̸= ∅ with 1−x′
m −x′

o > x̄m, contradicting the definition of x̄m as the maximum801

value of xm such that M(xm) ∩K0 ̸= ∅.802

Therefore, no such x′
m < 1 − x̄m − r̄ can exist in D, establishing that 1 − x̄m − r̄ = minD.803

Proposition 4.3 (Complete Characterization of the K0 Boundary). Let R3 = {(xm, R(xm)) :804

xm ∈ [1 − x̄m − r̄, x̄m]} denote the subset of the ridge graph that lies in K0. The boundary of the805

cycle region K0 consists of exactly three curves:806

bd(K0) = R3 ∪ F(R3) ∪ F2(R3)807

where:808

F(R3) = {(1 − xm −R(xm), xm) : xm ∈ [1 − x̄m − r̄, x̄m]}809

F2(R3) = {(R(xm), 1 − xm −R(xm)) : xm ∈ [1 − x̄m − r̄, x̄m]}810

Proof. From Corollary 4.3.3 and Lemma 7, the λ2,t+2 = 0 boundary of K0 is precisely R3.811

Since K0 consists of allocations generating optimal 3-cycles, it is invariant under the aging map F :812

if x ∈ K0, then {x,Fx,F2x} ⊂ K0. This 3-fold rotational symmetry implies that the complete813

boundary is:814

bd(K0) = R3 ∪ F(R3) ∪ F2(R3)815

Since F(xm, xo) = (1 − xm − xo, xm) and F2(xm, xo) = (xo, 1 − xm − xo), we obtain the explicit816
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characterization above. The three curves together form the complete boundary bd(K0).817

4.3.4 The feasible transition sets818

We partition the state space into sets K0,K1,K2, . . . where Ki contains allocations such that819

Γr(x)∩Ki−1 ̸= ∅ but x /∈
⋃i−1

j=0Kj . This hierarchical partition transforms the convergence problem820

into showing that optimal trajectories move systematically through these sets toward K0.821

Definition 6. Feasible Transition Sets822

Call the cycle region, defined by (7a) ≥ 0 and (7b) ≥ 0, K0. The set Ki is the set of allocations823

that can feasibly transition to Ki−1 but are not already elements of any Kj , (j < i). That is824

Ki = {x∈∆2\
⋃i−1

j=0Kj : Γr(x) ∩ Ki−1 ̸= ∅}. Figure 8 shows the feasible transition sets for four825

examples with qualitatively different intersections between the ridge and the sets. △826

Although definition 6 defines the Ki sets, we will need an explicit enumeration of these sets in the827

subsequent analysis. The following sections define the allocations that satisfy the definition above.828

Definition 7. Explicit definition ofK1 The setK1 consists of allocations that can feasibly transition829

to K0 under the restricted transition rule but are not already elements of K0.830

From the restricted transition rule, allocation x = (xy, xm, xo) can transition to any point in831

Γr(x) = {(1 − xy − x′
o, xy, x

′
o) : 0 ≤ x′

o ≤ xm}832

For Γr(x) ∩K0 ̸= ∅, the iso-mature line M(xy) must intersect K0, requiring xy ∈ [1 − x̄m − r̄, x̄m].833

Since K0 ∩ M(xy) is maximized at x′
o = R(xy) by Lemma ??, the transition set reaches K0 when834

R(xy) ≤ xm. The strict inequality R(xy) < xm ensures x /∈ K0.835

For the given xy values, no other xm values are admissible: if xm ≤ R(xy), then Γr(x) cannot reach836

K0, so x /∈ K1. The upper constraint comes from requiring x /∈ K0, which excludes certain xm837

values where (xy, xm, 1 − xy − xm) ∈ K0.838
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Therefore:839

K1 =
{

(xy, xm, xo) ∈ ∆2
∣∣∣ xy ∈ [1 − x̄m − r̄, x̄m],840

R(xy) < xm,841

xo = 1 − xy − xm

}
.842

△843

Definition 8. Explicit definition of K2844

K2 consists of two sets: K ′
2, the set of points that transition to K1 via Faustmann transition845

(xo,t+1 = xmt), and K ′′
2 , the set of points that transition to K1 via Non-Faustmann transition846

(xo,t+1 < xmt). These sets are defined as:847

K ′
2 =

{
x ∈ ∆2 : Fx ∈ K1

}
=
{

(xy, xm, xo) ∈ ∆2 : xo ∈ [1 − x̄m − r̄, x̄m],848

xm < 1 − xo −R(xo),849

xy = 1 − xm − xo

}
850

K ′′
2 =

{
(xy, xm, xo) ∈ ∆2

∣∣∣ xy ∈ [x̄m, x̄m + r̄],851

xo ≤ 1 − x̄m − r̄,852

xm = 1 − xy − xo

}
853

Therefore, K2 = K ′
2 ∪K ′′

2 . △854

Definition 9. Explicit definition of K3855

Like K2, K3 is composed of consists of two sets, K ′
3 the set of points that transition to K2 via Faust-856

mann transition, and K ′′
3 , the set of points that transition to K2 via Non-Faustmann transition.857
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These sets are defined as:858

K ′
3 =

{
x ∈ ∆2 : Fx ∈ K2

}
859

=
{

(xy, xm, xo) ∈ ∆2 : xm ∈ [1 − x̄m − r̄, x̄m],860

xy < 1 − xm −R(xm),861

xo = 1 − xy − xm

}
862

∪
{

(xy, xm, xo) ∈ ∆2 : xo ∈ [x̄m, x̄m + r̄],863

xm ≤ 1 − x̄m − r̄,864

xy = 1 − xm − xo

}
865

and866

K ′′
3 =

{
(xy, xm, xo) ∈ ∆2

∣∣∣ xy ∈ [0, 1 − x̄m − r̄],867

xm > x̄m,868

xo = 1 − xy − xm

}
869

Therefore, K3 = K ′
3 ∪K ′′

3 . △870

Definition 10. Explicit definition of K4 and K5871

There are two remaning regions on the simplex: {x ∈ ∆2 : xy > x̄m+r̄} and {x ∈ ∆2 : xo > x̄m+r̄}.872

For all x in the first set, the restricted transition sets will have xm > x̄m + r̄ meaning the restricted873

transistion sets will be wholly contained in K3. Hence this set must be a subset of K4. For all x874

in the second set, the restricted transition sets cannot intersect any allocations with xy ≤ x̄m + r̄,875

meaning these restricted transtition sets are wholly contained within the first set. Hence the second876

set must be a subset of K5. By definition, there can be no common elements of Ki and Kj , so we877

have K4 = {x ∈ ∆2 : xy > x̄m + r̄} and K5 = {x ∈ ∆2 : xo > x̄m + r̄}. △878
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4.3.5 Restricting focus to the ridge879

We prove that any allocation xt /∈ K0 must optimally transition to the ridge R within at most880

three periods. This result reduces the convergence analysis to characterizing how allocations on881

each of the four ridge segments R1,R2,R3,R4 transition toward K0. The proof shows that avoiding882

the ridge for three consecutive periods would require Faustmann transitions satisfying F3xt = xt,883

contradicting xt /∈ K0.884

Lemma 8. Any xt /∈ K0 must optimally transition to R in at most three periods, i.e., if x∗
t+1 /∈ R885

and x∗
t+2 /∈ R then x∗

t+3 ∈ R.886

Proof. Assume there exists xt /∈ K0, such that for i∈{1, 2, 3}, any selection ξ(xt+i) ∈ ξξξ(xt+i), ξ(xt+i) /∈887

R(xm,t+i−1). This implies that for i∈{1, 2, 3}, R(xm,t+i) /∈ Γr(xt+i) and hence xt+i = F ixt. But in888

this case F3xt=xt, i.e., xt is part of a three-cycle, contradicting the assumption that x0 /∈ K0.889

Definition 11. Let x̃ = (x̃, R(x̃)) where x̃m = min{xm : R(xm) = {0}}, i.e. the lowest xm for890

which the largest value of the ridge correspondence equals the xo = 0 boundary of the simplex. △891

From Lemma 8, the analysis reduces to focusing on the behavior of allocations contained within892

R. To facilitate the following analysis, the ridge is partitioned into four subsets.893

Definition 12. Ridge subsets894

Let the set of allocations on the ridge, formally, {x ∈ ∆2 : x = (xm, R(xm)), xm∈[0, 1]} be895

partitioned into the following, mutually exclusive subsets:896

R1 := {x ∈ R : xm∈(x̃m, 1]} (18a)897

R2 := {x ∈ R : xm∈(x̄m, x̃m]} (18b)898

R3 := {x ∈ R : xm∈[R(x̄m), x̄m]} (18c)899

R4 := {x ∈ R : xm∈[0, R(x̄m))} (18d)900

△901
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(a) Parameters generating N1 = 0, N2 = 0
(u(c) = ln(c), f = (0.23, 1, 0.63), β = 0.75).

(b) Parameters generating N1 > 0, N2 = 0
(u(c) = ln(c), f = (0.38, 1, 0.60), β = 0.53).

(c) Parameters generating N1 = 0, N2 > 0
(u(c) = ln(c), f = (0.30, 1, 0.52), β = 0.21).

(d) Parameters generating N1 > 0, N2 > 0
(u(c) = ln(c), f = (0.27, 1, 0.48), β = 0.37).

Figure 8: Example feasible transition-set plots for the four combinations of N1 and N2. (a) N1 =
0, N2 = 0; (b) N1 > 0, N2 = 0; (c) N1 = 0, N2 > 0; (d) N1 > 0, N2 > 0.
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4.3.6 Transitions from R2902

We analyze R2 = {x ∈ R : xm ∈ (x̄m, x̃m]} and establish that optimal transitions are declining in903

mature tree allocations, with each step reducing the mature component by at least δ1 > 0. Using904

properties of ∂V/∂xo along the boundary bd(K12), which is established to be differentiable, we905

prove that allocations within δc of x̄m transition directly to K0. This monotonic decrease ensures906

convergence to K0 within N1 = ⌈1−x̄m
δ1

⌉ periods.907

Throughout this section, we sometimes write u(c(xt)) as u(xt) for conciseness.908

Lemma 9. If xt ∈ K1, then x∗
t+1 ∈ K0.909

Proof. As established in the proof of Lemma ??, β dV (xt)
dxo

∣∣∣
xt∈K0

= λ2,t+2, and the ridge corresponds910

to the λ2,t+2 = 0 boundary of K0. By Definition 12, this boundary portion is R3.911

For any xt ∈ K1, Definition 7 ensures that Γr(xt) ∩ K0 ̸= ∅, specifically that the iso-mature line912

M(xyt) intersects K0 with R(xyt) ≤ xmt. Since the ridge point (xyt, R(xyt)) maximizes value on913

M(xyt) by definition of the ridge, and this point lies within the feasible transition set Γr(xt), the914

optimal transition function (Definition 4) yields ξξξ(xt) ∈ R3 ⊂ K0.915

Using the definitions of the feasible transition sets (definitions 7 and 9), denote the boundary916

between K1 and K3 as bd(K13) =
{(
xm, (x̄m+r̄−xm)

)
: xm ∈ (x̄m, x̄m+r̄]

}
(see for example, figure917

8). Note that this boundary coincides with the iso-young line defined by xy = 1 − x̄m − r̄.918

Lemma 10. For allocations in bd(K13), ∂V
∂xo

< 0919

Proof. Consider two allocations in bd(K13), x̌ = (x̌m, x̄m + r̄ − x̌m) and x̂ = (x̂m, x̄m + r̄ − x̂m)920

where x̂m > x̌m. Therefore u′(x̂) < u′(x̌) since fm > fo. Because these allocations are in K1,921

lemma 9 applies and the optimal transition is to R3, which is in the interior of Γr(x). Hence,922

the Benveniste-Scheinkman theorem applies and V (x) is C1 along bd(K13). The derivatives of the923
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value function along the corresponding iso-mature lines at these two allocations are924

dV (xt)
dxo

∣∣∣∣
x̌

= u′(x̌)(fo − fy) + β
dV (ξξξ(x̌))
dxo

dV (xt)
dxo

∣∣∣∣
x̂

= u′(x̂)(fo − fy) + β
dV (ξξξ(x̂))
dxo

(19)925

Because x̌ and x̂ are on the same iso-young line we have ξξξ(x̌) = ξξξ(x̂). Therefore926

dV (xt)
dxo

∣∣∣∣
x̂

− dV (xt)
dxo

∣∣∣∣
x̌

= (u′(x̂) − u′(x̌))︸ ︷︷ ︸
<0

(fo − fy)︸ ︷︷ ︸
>0

927

Since x̂ and x̌ are identical except for xm, we can conclude that the derivative term in (19) decreases928

with xm. Now take a xm∈(x̄m, x̄m + r̄] and let it approach x̄m from above. Since (x̄m, r̄) is on the929

λ2,t+2 = 0 boundary of K0 it follows from Lemma 9 that930

lim
xm↘ x̄m

dV (xm, x̄m − r̄ − xm))
dxo

= dV (x̄m, r̄)
dxo

= 0931

Therefore, for all x ∈ bd(K13), dV (x)
dxo

< 0.932

Corollary 11. R2 ⊂ K1 ∪K2933

Proof. From the explicit definitions of the Ki sets (definitions 7–10), R2 ⊂ K1 ∪K2 ∪K3. Lemma934

10 implies that for all x ∈ R2, 1 − xm − xo > 1 − x̄m − r̄, so R2 ∩K3 = ∅.935

Lemma 12. There exists a constant δc>0, such that if x∈R2 and (xm−x̄m)<δc, then x∈K1.936

Proof. Let bd(K12) = {x ∈ ∆2 : xy = x̄m, xm ∈ (r̄, 1 − x̄m]}937

denote the common boundary of K1 and K2.938

Case 1: R2 ⊂ K1. Because x̄m > r̄ (Proposition 4.1), every point of R2 lies at most 1 − 2x̄m units939

to the right of x̄m in the mature coordinate, so the lemma holds with δc = 1 − 2x̄m.940
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Case 2: R2 ∩K2 ̸= ∅. Define941

A =
{
xm − x̄m > 0 : ∃xo with (xm, xo) ∈ R2 ∩ bd(K12)

}
.942

The set A is non-empty (because R2 ∩K2 ̸= ∅) and is bounded below by 0. Since the ridge graph943

is closed (definition 3), A is closed, so δc := inf A > 0 and944

(xm − x̄m) < δc =⇒ x ∈ R2 ⊂ K1.945

946

Lemma 13. There exists δ1∈(0, δc) (where δc was identified in Lemma 12), such that for every947

xt∈R2, the optimal transition satisfies ξm(xt) < xm,t − δ1.948

Proof. First consider x̄c∈K0. Since K0 is not a singleton set (by proposition 4.1), and x̄c is the949

allocation in K0 with the largest mature element, there exists δ0>0 such that ξm(x̄c)<x̄m−2δ0.950

By continuity, there exists ϵ>0 such that for xt∈R2, if xmt−x̄m≤ϵ, then ξm(xt)<xmt−δ0. Now let951

R̂2 = {x∈R2 : xt−x̄m≥ϵ}. If R̂2 is empty, then the result is proved, by setting δ1 = δ0. Assume952

therefore that R̂2 ̸= ∅; we will show that953

for all xt ∈ R2, ξm(xt) < xmt. (20)954

If, to the contrary, there exists xt∈R2 such that ξm(xt) ≥ xmt, then by continuity and the inter-955

mediate value theorem, there must exist x′
t∈R2 such that ξm(x′

t)=x′
mt. That is, by the definition956

of ξ(·), and noting that xt is transitioning from ridge point to ridge point,957

ξ(x′
t) =

(
x′

tm, R
(
x′

mt

) )
=

(
ξm(x′

t), R
(
ξm(x′

t)
) )

= ξ(ξ(x′
t)) (21)958

for some xo ∈ R(x′
mt).959

However, (21) would imply that x′
t is an optimal steady state of the three-age-class tree replacement960
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problem. An optimal steady state is also, degenerately, a three-period cycle. This is a contradiction961

since x′
t is not an element of K0 (since by definition 18b of R2, x′

mt > x̄m) and K0 is defined as962

the set of all optimal three period cycles. Having proved (20), it follows from the compactness of963

R̂2 that there exists δ > 0 such that for all x∈R̂2, ξm(xt)≤xmt−δ. The Lemma now holds for964

δ1= min(δ, δ0).965

Corollary 14. Beginning from an allocation x∈R2, the optimal trajectory will enter K0 in at most966

N1 =
⌈

(1−x̄m)
δ1

⌉
periods (δ1>0 was identified in Lemma 13).967

Proof. For each x∈R2, let q(x)=
⌈

xm−x̄m
δ1

⌉
(that is, xm is no greater than q(x) units of length δ1968

larger than x̄m). Since x̄c /∈ R2 and xm > x̄m (see Definition 18b)
⌈

xm−x̄m
δ1

⌉
≤
⌈

1−x̄m
δ1

⌉
= N1, it969

follows that q(x)≤N1. We now prove the lemma by induction. First, fix x∈R2 such that q(x)=1.970

Since δ1<δ
c, Lemma 12 implies that x∈K1, so that from Lemma 9, x enters K0 in 1≤q(x) periods.971

Now fix 1<n≤N1, and assume that for all x∈R2 such that q(x)<n, x enters K0 in at most q(x)972

periods. (This assumption has been established to be true for n = 2.) Suppose there exists xt∈R2973

such that q(xt) = n. From Lemma 13, ξm(xt)<xm,t−δ1, implying that q(ξt + 1(xt)) ≤ n−1 and974

hence ξt+1(xt) enters K0 in at most q(xt)−1 periods. Therefore, x enters K0 in at most q(xt)≤N1975

periods, completing the proof.976

4.3.7 Transitions from R1977

We examine R1 = {x ∈ R : xm ∈ (x̃m, 1]} and establish that R(xm) = 0 for xm > x̄m + r̄ using978

monotonicity of the subdifferential ∂xoV (xm, xo). From any point in R1, optimal transitions are979

necessarily to R4.980

Lemma 15 (Monotonicity of the Subdifferential ∂xoV (xm, xo) in xm). Consider the restricted value981

function V : ∆2 → R. Fix xo ∈ [0, 1], and let xm, x
′
m ∈ [0, 1 − xo] with xm < x′

m. Then for any982

subgradients983

g1 ∈ ∂xoV (xm, xo), g2 ∈ ∂xoV (x′
m, xo),984
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we have985

g1 ≥ g2.986

That is, the subdifferential of V with respect to xo is monotonically decreasing in xm, even when987

xo lies on the boundary of its domain.988

Proof. By Lemma 2, the restricted value function V : ∆2 → R exists, is unique, continuous, and989

weakly concave on the state space ∆2.990

Step 1: Measurable selection and envelope theorem setup By the definitions of the Ridge (Definition991

3) and the restricted optimal transition function (Definition 4), the optimal policy correspondence992

ξξξ(xt) := arg max
xt+1∈Γr(xt)

{u(c(xt)) + βV (xt+1)}993

is nonempty, compact-valued, and upper hemicontinuous on the state space ∆2.994

Define the stage return function:995

ϕ(xt,xt+1) := u(c(xt)) + βV (xt+1)996

where c(xt) = fyxyt + fmxmt + foxot.997

Since u is strictly concave and increasing, and the argument fyxyt + fmxmt + foxot is linear in xt998

and bounded on the compact domain ∆2, the utility term is continuous and bounded. By corollary999

14.6 of Rockafellar and Wets (1998), there exists a measurable selection ξ(xt) ∈ ξξξ(xt).1000

Step 2: Concavity of the stage return function1001

The stage return function ϕ(xt,xt+1) is concave in xt because:1002

• The utility term u(c(xt)) is the composition of a strictly concave function u with the linear1003

function c(xt), hence concave in xt.1004

• The continuation value βV (xt+1) is constant in xt for fixed xt+1, hence concave.1005
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Since the constraint correspondence Γr has a convex graph (the constraints are linear), the value1006

function is concave as the supremum of concave functions over a convex constraint set.1007

Step 3: Envelope theorem application1008

Define1009

Ṽ (xt) := ϕ(xt, ξ(xt)) = V (xt).1010

Since ϕ is concave in xt and ξ(xt) is a maximizer, the subdifferentiation in parametric minimization1011

theorem of Rockafellar and Wets (1998, Theorem 10.13) implies:1012

∂xoV (xt) ⊇ ∂xoϕ(xt, ξ(xt)).1013

Step 4: Subdifferential monotonicity1014

Consider the mapping xm 7→ V (xm, xo) for fixed xo. This is the composition of V with the affine1015

transformation xm 7→ (xm, xo), where the image always lies in ∆2. Since V is weakly concave on1016

∆2 and the transformation is affine, the composite function is weakly concave in xm.1017

By the monotonicity of one-sided derivatives for convex functions9 (Rockafellar, 1970, Theorem1018

24.1) and the resulting monotonicity of subgradients for the concave function V , and because1019

subdifferentials are non-empty on the relative interior of the domain (Rockafellar, 1970, Theorem1020

23.4), with one-sided limits supplying the endpoints, we have that for any xm < x′
m ∈ [0, 1 − xo]1021

and subgradients1022

g1 ∈ ∂xoV (xm, xo), g2 ∈ ∂xoV (x′
m, xo),1023

it holds that g1 ≥ g2.1024

This conclusion holds whether the subdifferential is a singleton or a closed interval.1025

9Apply Theorem 24.1 to the convex function −g. The resulting non-decreasing property of the subgradients of
−g translates into a non-increasing property for the subgradients of g.
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Recall from Definition 11 that x̃ = (x̃, R(x̃)) where x̃ = min{xm : R(xm) = 0}, i.e. the lowest xm1026

for which the largest value of the ridge correspondence equals the xo = 0 boundary of the simplex,1027

i.e. min{xo : R̄ = {0}}.1028

Lemma 16 (R(xm) = 0 for xm > x̄m + r̄). For all xm > x̄m + r̄, we have R(xm) = 0.1029

Proof. By Lemma 10, for (x̄m + r̄, 0), ∂V
∂xo

(x̄m + r̄, 0) exists and is strictly negative.1030

For any xm > x̄m + r̄, by Lemma 15, the subdifferential ∂xoV (xm, 0) consists entirely of strictly1031

negative values:1032

∀g ∈ ∂xoV (xm, 0), g < 0.1033

Since V is weakly concave in xo by Lemma 2, and the entire subdifferential at xo = 0 lies strictly1034

below zero for xm ≥ x̄m + r̄, Proposition 27.4 of Rockafellar (1970) implies that V (xm, xo) is strictly1035

decreasing at xo = 0. Therefore, the static problem1036

max
xo∈[0,1−xm]

V (1 − xm − xo, xm, xo)1037

has the unique maximizer x∗
o(xm) = 0, which means R(xm) = 0.1038

Corollary 17. For all x ∈ R1, ξξξ(x) ∈ R.1039

Proof. From Lemma 16, for all x ∈ R1, xo = 0. Since xo = 0, the restricted transition set from1040

x is the entire iso-mature line, M(1 − xmt). The allocation (1 − xmt, r(1 − xmt)) ∈ M(1 − xmt),1041

hence ξξξ(x) = (1 − xmt, r(1 − xmt)) ∈ R.1042

4.3.8 Transitions from R41043

We analyze R4 = {x ∈ R : xm ∈ [0, r̄)} and partition it based on intersections with feasible1044

transition sets. For allocations in R4 ∩ K5, optimal three-period transitions increase the mature1045

component by at least δ2 > 0, ensuring optimal trajectories enter K2 ∪ K3 within N2 = 3⌈x†
m

δ2
⌉1046

periods.1047
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Using the definitions of the feasible transition sets (definitions 8 and 10), denote the boundary1048

between K2 and K4 as bd(K24) =
{(
xm, (1−x̄m−r̄−xm)

)
: xm ≤ 1 − x̄m − r̄

}
(see for example,1049

figure 8). Note that this boundary coincides with the iso-young line defined by xy = x̄m + r̄.1050

Lemma 18. For allocations in bd(K24), ∂V
∂xo

> 0.1051

Proof. For all xt ∈ bd(K24), xm,t+1 = x̄m + r̄. Since R(x̄m + r̄) is a singleton {0} (Lemma 16),1052

Tr(xt) ∩R(xm,t+1) contains the single point (x̄m + r̄, 0); hence every selection of the optimal policy1053

correspondence chooses that point.1054

Since (x̄m + r̄, 0) ∈ K1, by Lemma 9 it optimally transitions to (1 − x̄m − r̄, R(1 − x̄m − r̄)) ∈ K0.1055

Note that (1 − x̄m − r̄, R(1 − x̄m − r̄)) = (1 − x̄m − r̄, x̄m) since (1 − x̄m − r̄, R(1 − x̄m − r̄)) ∈ K0,1056

(x̄m, r̄) ∈ K0 by definition, and F(x̄m, r̄) = (1 − x̄m − r̄, x̄m). Therefore the value function for any1057

point x∈bd(K24) can be written in Bellman equation form:1058

V (x)|x∈bd(K24) = u(x) + βu(x̄m + r̄, 0) + β2V (1 − x̄m − r̄, x̄m) (22)1059

This expression is differentiable because it is the affine composition of two C2 functions and the1060

value function evaluated at a point in K0.1061

Consider two allocations in bd(K24), x̌
(
x̌m, (1−x̄m−r̄−x̌m)

)
and x̂ =

(
x̂m, (1−x̄m−r̄−x̂m)

)
, where1062 (

1−x̄m−r̄) ≥ x̂m > x̌m. Therefore u′(x̂) < u′(x̌) since fm > fo. The derivatives of the value1063

function with respect to xo along the corresponding iso-mature lines at these two allocations are1064

dV (xt)
dxo

∣∣∣∣
x̂∈bd(K24)

= u′(x̂)(fo − fy) + βu′(x̄m + r̄, 0)(fy − fm) + β2dV (1 − x̄m − r̄, x̄m)
dxm

1065

dV (xt)
dxo

∣∣∣∣
x̌∈bd(K24)

= u′(x̌)(fo − fy) + βu′(x̄m + r̄, 0)(fy − fm) + β2dV (1 − x̄m − r̄, x̄m)
dxm

1066

Therefore1067

dV (x̂)
dxo

− dV (x̌)
dxo

= (u′(x̂) − u′(x̌))︸ ︷︷ ︸
<0

(fo − fy)︸ ︷︷ ︸
>0

(23)1068
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Hence in bd(K24), we can conclude that the derivative of (22) with respect to xo decreases with1069

xm. Observe that (1 − x̄m − r̄, x̄m) ∈ R3 ⊂ K0, so R(1 − x̄m − r̄) > 0 and dV
dxo

|(1−x̄m−r̄,0) > 0.1070

Therefore dV (x)
dxo

> 0 for all x∈bd(K24).1071

Corollary 19. R4 ∩K4 = ∅.1072

Proof. From the explicit definitions of the Ki sets (definitions 8–10), R4 ⊂ K2 ∪ K3 ∪ K4 ∪ K5.1073

Lemma 18 implies that for all x ∈ R4, 1 − xm − xo < x̄m + r̄, so R2 /∈ K4.1074

Lemma 20. For all xm < 1 − x̄m − r̄, 1 − xm ̸∈ R(xm).1075

Proof. Suppose to the contrary that there exists xm ∈ [0, 1 − x̄m − r̄) such that 1 − xm ∈ R(xm).1076

Let x0 = (xm, 1 − xm, 0). Since xm < 1 − x̄m − r̄, we have 1 − xm > x̄m + r̄. By the definition of1077

x̄m, the largest mature share in K0, this allocation x0 /∈ K0.1078

The feasible transition set from x0 is the iso-mature line M(xm). Under the assumption 1 − xm ∈1079

R(xm), the ridge point x1 = (0, xm, 1 − xm) must be an optimal choice in M(xm).1080

Since 1 − xm > x̄m + r̄, x1 ∈ K5. Since x1 ∈ K5, any feasible transition from x1 must lie in K4.1081

But by Corollary 19, the ridge does not intersect K4, so no ridge point is feasible. Therefore, by1082

Definition 4, the only optimal transition is the Faustmann point x2 = F(x1) = (1 − xm, 0, xm).1083

From x2, the only feasible transition is the aging map F(x2) = (xm, 1 − xm, 0) = x0. Thus1084

x0 → x1 → x2 → x0 forms a 3-cycle in which each transition is optimal. But then x0 would lie1085

in K0, contradicting the fact that its mature share 1 − xm > x̄m. Hence the assumption must be1086

false, and 1 − xm ̸∈ R(xm) for all xm < 1 − x̄m − r̄.1087

Lemma 21. For xt∈K4, x∗
t+2 ∈ R(()xmt + xot).1088

Proof. Let xt = (xmt, xot) be an allocation in K4. By the definition of K4 (definition 10), xyt >1089

x̄m + r̄ (> x̃m), so xm,t+1 > x̄m + r̄.1090

By Lemma 16, whenever xm,t+1 > x̄m+r̄ the ridge on the iso-mature line M(xm,t+1) is the singleton1091

{(xm,t+1, 0)}. Because this point lies in the restricted transition set Γr(xt), Definition 4 implies1092
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that the optimal policy correspondence selects it. Hence1093

x∗
t+1 = (1 − xmt − xot, 0).1094

Since xo,t+1 = 0, the restricted transition set from xt+1 is the entire iso-mature line, M(xmt +xot).1095

Hence the optimal transition from x∗
t+1 to xt+2 will be to R, i.e., to some ξ(x∗

t+1) ∈ R(()xmt +1096

xot).1097

Lemma 22. If xt ∈ R4 ∩K3, then ξξξ(xt) ⊂ K21098

Proof. Using definition 9, xt ∈ R4 ∩ K3 implies xm < 1 − x̄m − r̄ and x̄m < xo < x̄m + r̄, so for1099

all xt ∈ R4 ∩ K3, Γr(x) ⊂ K2 ∪ K4. By corollary 19, R4 ∩ K4 = ∅, so every element of ξξξ(xt) is1100

contained in K2 .1101

Lemma 23. If R4 ∩K5 ̸= ∅, R4 ∩ bd(K3 ∩K5) is a singleton.1102

Proof. Along bd(K3 ∩K5) the optimal policy reaches the interior of K0 after exactly three periods1103

(first toK4, then toK1 as a corollary of Lemma 21, then intoK0). So, for allocations in bd(K3∩K5),1104

the value function can be written explicitly as1105

V (x)|x∈bd(K35) = u(x) + βu(Fx) + β2u(xo, 0) + β3V (1 − x̄m − r̄, x̄m)1106

Because the Bellman operator composes three C2 stage-utility terms before evaluating V at a point1107

in the C2 region K0, the composite expression for V on bd(K3 ∩K5) is C2.1108

Taking the derivative of this expression with respect to xo and noting that the continuation payoff1109

is constant with respect to xo, we get1110

dV (x)
dxo

∣∣∣∣
x∈bd(K35)

= u′(x)(fo − fy) + βu′(Fx)(fy − fm) + β2u′(xo, 0)(fm − fy)1111
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Further taking the derivative with respect to xm yields1112

d2V (x)
dxmdxo

∣∣∣∣∣
x∈bd(K35)

= u′′(x)︸ ︷︷ ︸
<0

(fo − fy)︸ ︷︷ ︸
>0

(fm − fy)︸ ︷︷ ︸
>0

+β u′′(Fx)︸ ︷︷ ︸
<0

(fy − fm)︸ ︷︷ ︸
<0

(fo − fm)︸ ︷︷ ︸
<0

+ 0 (< 0)1113

where the last term vanishes because (xo, 0) is constant with respect to xm.1114

Regarding the statement of the lemma, suppose to the contrary there exist (xm, x̄m + r̄), (x′
m, x̄m +1115

r̄) ∈ bd(K3 ∩ K5) such that dV
dxo

= 0. By Rolle’s theorem, there exists x′′
m ∈ [xm, x

′
m] such1116

that d2V
dmdo

= 0. This is a contradiction since for all x ∈ bd(K3 ∩ K5), d2V (x)
dxmdxo

< 0. Therefore,1117

|bd(K3 ∩K5)| ≤ 1 and the result is proved.1118

Lemma 24. For x∈R4, there exists δd>0, such that |1 − x̄m − r̄−xm| > δd, if and only if x ∈ K5.1119

Proof. From definition 10, K5 is the set of allocations with xo > x̄m + r̄. Recall bd(R3) ∩ bd(R4)1120

is the singleton (1 − x̄m − r̄, x̄m). By the interiority of K0, r̄ > 0, so (bd(R3) ∩ bd(R4)) ∩K5 = ∅.1121

Because the correspondence R(.) is upper hemicontinuous and compact valued, for any ϵ′ > 0 there1122

exists a δ′ > 0 such that whenever |1 − x̄m − r̄ − xm| < δ′, every element r ∈ R(xm) satisfies1123

|x̄m − r| < ϵ′. This follows because R(1 − x̄m − r̄) is the singleton {x̄m}.1124

If R4 ⊂ K2 ∪K3, R4 ∩K5 = ∅. Let δd = 1 − x̄m − r̄ and the lemma holds vacuously.1125

On the other hand, if R4 ∩ K5 ̸= ∅ , by the ridge’s single crossing of bd(K35) and that the ridge1126

is a singleton at this crossing (Lemma 23), there exists a unique x′
m ∈ [0, 1 − x̄m − r̄) such that1127

R4 ∩ bd(K35) = (x′
m, r(x′

m)) = (x′
m, x̄m + r̄).1128

Let δd = 1 − x̄m − r̄ − x′
m and the result is proved.1129

Corollary 25. There exists δ2 > 0, such that for every state xt∈R4 ∩ K5 and every optimal1130

three-period transition selection ξ3(xt) ∈ ξξξ3(xt), ξ3(xt) > xmt + δ2.1131

Proof. For all xt∈R4 ∩ K5, xot > x̄m + r̄ from the definition of K5 (Definition 10), and xy,t+1 >1132

x̄m + r̄, so these allocations can only feasibly transition to K4.1133
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Using corollary 19, the opimal first step is the Faustmann transition, x∗
t+1 = Fxt = (xot, xyt, xmt).1134

Using Lemma 21, the unique optimal successor to x∗
t+1 is x∗

t+2 = (xyt + xmt, xot, 0) and ξξξ3(xt) =1135

{(xyt + xmt, r)} for all selections r ∈ R(xyt + xmt). Hence for every selection ξ3(xt) ∈ ξξξ3(xt),1136

ξ3
m(xt) = xyt +xmt. Using Lemma 20, 1−xmt = xyt > 0 for all xmt < 1−x̄m − r̄, so xyt +xmt > xmt.1137

From lemma 23, R4 ∩ (bd(K3) ∩ bd(K5)) is a singleton. Denote this allocation as x† and note x†
o =1138

x̄m + r̄ by construction. Recall that R(1− x̄m − r̄) = {x̄m} with unique selection r(1− x̄m − r̄) = x̄m,1139

so (1 − x̄m − r̄, r(1 − x̄m − r̄)) = (1 − x̄m − r̄, x̄m) and (1 − x̄m − r̄, x̄m + r̄) ̸∈ R by the interiority1140

of K0. Therefore x†
y > 0.1141

The closure cl((R4 ∩K5)∪{x†}) is compact and for all x ∈ cl((R4 ∩K5)∪{x†}), xy > 0. Therefore,1142

by compactness, there exists δ2 > 0 such that for all x ∈ (R4 ∩K5) ∪ {x†}, xy > δ2.1143

Finally, for every xt∈R4 ∩ K5 and every selection ξ3(xt) ∈ ξξξ3(xt), we have ξ3(xt) = xyt + xmt >1144

xmt + δ2.1145

Corollary 26. Beginning from an allocation x ∈ R4 ∩K5, the optimal trajectory will enter K2 ∪K31146

in at most N2 = 3
⌈

x†
m

δ2

⌉
periods (where x†

m and δ2 were defined in Lemma 25).1147

Proof. For each x ∈ R4 ∩ K5, let q(x) =
⌈

x†
m−xm

δ2

⌉
. That is, xm is no greater than q(x) units of1148

length δ2 less than x†
m . Since x† ̸∈ R4 ∩ K5 and 0 ≤ xm < x†

m, 3
⌈

x†
m−xm

δ2

⌉
≤ 3

⌈
x†

m
δ2

⌉
= N2, it1149

follows that 3q(x) ≤ N2.1150

Fix xt ∈ R4 ∩ K5 such that q(xt) = 1. By Lemma 25, choose any ξ3(xt) ∈ ξξξ3(xt), then ξ3
m(xt) >1151

xmt + δ2 ≥ x†
m and ξξξ3(xt) ⊂ K2 ∪K3. So xt optimally enters K2 ∪K3 in 3 ≤ 3q(xt) periods.1152

Now fix 1 ≤ n <
⌈

N2
3

⌉
and assume that every xt ∈ R4 ∩K5 with q(xt) = n enters K2 ∪K3 within 3n1153

periods. Suppose there exists xt ∈ R4 ∩K5 such that q(xt) = n+ 1. From Lemma 25, choose any1154

ξ3(xt) ∈ ξξξ3(xt) such that ξ3
m(xt) > xmt +δ2, implying that q(ξ3

m(xt)) ≤ n and ξ3(xt) enters K2 ∪K31155

in at most 3n periods. Therefore xt enters K2 ∪K3 in at most 3 + 3q(ξ3
m(xt)) ≤ 3 + 3n = 3(n+ 1)1156

periods.1157

Therefore, for any xt ∈ R4 ∩ K5, xt enters K2 ∪ K3 in at most 3q(xt) ≤ N2 periods, completing1158
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the proof.1159

4.3.9 Uniform Convergence1160

Proposition 4.2. For the problem defined by conditions (5a)-(5e), there exists N = 6 + N1 + N21161

such that the optimal trajectory starting from any x0 ∈ ∆2 converges to K0 in at most N periods1162

(N1 is defined in Corollary 14 and N2 is defined in Corollary 26).1163

Proof. Consider each part of the simplex in turn. First, for all x0 ∈ ∆2 \ R, the optimal trajectory1164

transitions to R in at most 3 periods (Lemma 8). Now consider each segment of the ridge in turn.1165

From definition 8 and Proposition 4.1, for all x ∈ R2, the optimal trajectory reaches K0 in at most1166

N1 periods.1167

From 18c, R3 ⊂ K0 so for all x ∈ R3 the optimal trajectory is already in K0 (reaches K0 in 01168

periods).1169

From definition 10, definition 18d, and Corollary 19, R4 ⊂ K2 ∪K3 ∪K5. Note that for all x ∈ K2,1170

the feasible transition set intersects K1 (definition 6), and for any selection ξ(xt) ∈ ξξξ(x), we have1171

ξ(xt) ∈ K1∪R2, which optimally transitions to K0 in at most max{1, N1} = N1 periods. Therefore,1172

for all x ∈ R4 ∩K2, the optimal trajectory enters K0 in at most 1 +N1 periods.1173

For x ∈ R4 ∩K3, the feasible transition set is a subset of K2 ∪K4 and has a non-empty intersection1174

with K2 (definition 8) so for any selection ξ(xt) ∈ ξξξ(x), ξ(xt) ∈ K2 (Lemma 19). From the reasoning1175

above, any such ξ(xt) ∈ K2 enters K0 in at most 1 + N1 periods. Therefore, for all x ∈ R4 ∩ K3,1176

the optimal trajectory enters K0 in at most 2 +N1 periods.1177

For x ∈ R4 ∩K5, the optimal trajectory reaches R4 ∩ (K2 ∪K3) in at most N2 periods (Corollary1178

26). From the reasoning above x enters K0 in at most max{1 + N1, 2 + N1} + N2 = 2 + N1 + N21179

periods. Therefore, for all x ∈ R4, the optimal trajectory enters K0 in at most max{1 + N1, 2 +1180

N1, 2 +N1 +N2} = 2 +N1 +N2 periods.1181

From definition 7 and definition 18a, R1 ⊂ K1 ∪K2 ∪K3. For x ∈ R1 ∩K1, the optimal trajectory1182

reaches K0 in one period (Lemma 9). For x ∈ R1 ∩ K2, the optimal trajectory reaches K0 in at1183
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most N1 periods (Lemma 14). For x ∈ R1 ∩ K3, ξξξ(x) ⊂ R4 by definition 9 and corollary 17. As1184

shown above, the optimal trajectory starting at x ∈ R4 transitions to K0 in at most 2 +N1 +N21185

periods. Therefore, for x ∈ R1 ∩ K3, the optimal trajectory reaches K0 in at most 3 + N1 + N21186

periods.1187

Therefore, the optimal trajectory enters K0 in at most 6+N1+N2 periods, completing the proof.1188

4.4 Numerical analysis: Trajectories and comparative statics for the three-age-1189

class model1190

To analyze the three-age-class model numerically, we employ the running horizon algorithm detailed1191

in Appendix A.1. We generate approximation sequences of length S = 25 periods, sufficient for1192

trajectories to reach and demonstrate steady-state cycle behavior. The finite horizon length varies1193

with the discount factor: T = 25 periods for most cases, but T = 55 periods when β = 0.95 to1194

ensure adequate time for convergence.1195

4.4.1 Example Trajectory1196

Figure 9 illustrates the optimal trajectory beginning from an initial allocation of all young trees,1197

demonstrating how an arbitrary starting condition converges to the optimal cycle region. This1198

example assumes that β = 0.75 and f = (1, 3, 2)1199

In the initial period, the orchard consists entirely of young trees. Following optimal aging, period1200

one transitions to all mature trees. The ’first’ decision occurs in period two, where the grower faces1201

the choice between allowing all mature trees to age naturally versus implementing early replacement1202

for consumption smoothing. The optimal solution involves early replacement of just over one-third1203

of the mature trees before they reach their Faustmann age, while retaining just under two-thirds1204

as old trees. This early replacement decision reflects the economic trade-off between current period1205

production losses and improved future age structure for consumption smoothing.1206

The subsequent transition shows the orchard moving to a state with only young and mature trees in1207

period three, as all old trees have been harvested. By period four, the optimal policy maintains this1208
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structure temporarily before the trajectory enters the optimal three-period cycle region in period1209

five. The convergence occurs within six periods, so N1 and N2 are zero in this case.1210

This trajectory pattern demonstrates the economic mechanism underlying optimal orchard man-1211

agement: the grower willingly sacrifices short-term production to achieve long-term stability within1212

the cycle region. The early replacement of mature trees, while costly in terms of immediate fore-1213

gone output, generates the optimal age distribution for sustaining the consumption-smoothing cycle1214

indefinitely.1215

4.4.2 Numerical Comparative Statics1216

Figure 10 presents comparative statics examining how the cycle region responds to changes in1217

economic and biological parameters. These results provide a numerical analog to the theoretical1218

comparative statics derived for the two-age-class model.1219

Panel A shows how the discount factor β influences the optimal cycle region. As β increases from1220

0.5 to 0.95, the cycle region contracts around the even-aged allocation. This contraction reflects the1221

stronger preference for consumption smoothing among more patient growers. When β = 0.5, rep-1222

resenting relatively impatient preferences, the cycle region encompasses a large portion of the state1223

space, allowing for considerable production variation depending on initial conditions. Conversely,1224

with β = 0.95, the cycle region becomes concentrated near the even-aged orchard (1/3, 1/3, 1/3),1225

indicating that patient growers optimally maintain nearly constant production levels. The economic1226

intuition follows from our theoretical analysis: higher discount factors increase the relative impor-1227

tance of future utility, making consumption smoothing more valuable relative to current period1228

optimization.1229

Panel B shows how the productivity of old trees affects optimal cycle patterns. When fo = 2, cre-1230

ating a decline from mature to old tree productivity, the cycle region exhibits moderate amplitude.1231

As fo increases to 2.5, the cycle region expands. By fo = 3, where old trees are as productive as1232

mature trees, the cycle region extends to the boundary of the simplex. As the yield differences1233

decrease between the mature and old trees, the production variation generated by the age class1234
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Figure 9: Example trajectory starting from all young trees with β = 0.75, f = (1, 3, 2)

diminishes, pushing the balance toward the preference for current utility.1235
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(a) β = 0.5 (b) β = 0.75 (c) β = 0.95
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Figure 10: Combined cycle region examples (top rows) and their directly paired yield curves (bottom
rows). All panels use fy = 1 and fm = 3.
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5 Discussion1236

In their seminal work, Mitra et al. (1991) established that under monotonically increasing yields1237

(where older trees always produce more than younger ones), optimal programs never converge to a1238

stationary orchard,10 rather they permanently oscillate away from any steady state. Moreover, they1239

proved a neighborhood turnpike theorem showing that, as the discount factor approaches unity,1240

optimal paths remain within some neighborhood of the stationary optimal orchard.1241

Mitra, Ray and Roy also provide a hump-shaped yield example (Example 5.2) that produces in-1242

finitely many stationary orchards. Yet the two dynamic theorems with strictly concave utility they1243

prove—Propositions 5.2 and 5.3—track how an orchard moves relative to just one even-aged or-1244

chard. They do not identify the set of states an orchard may revisit under non-monotonic yields,1245

nor do they say whether the motion eventually settles into a particular pattern. Consequently, the1246

long-run form of optimal sequences with hump-shaped yields remains unresolved.1247

We resolve this gap. With a three-age-class, hump-shaped yield profile we (i) identify a precise1248

cycle region K0 that generates optimal three-period cycles; and (ii) prove that every optimal path,1249

for every discount factor in (0, 1), reaches K0 after at most N periods. Thus our convergence result1250

is stronger than a neighbourhood turnpike: it applies for all β, gives exact convergence to a set of1251

optimal cycles (not just proximity to a point), and provides a finite-time bound. Because K0 exists1252

under hump-shaped yields, our findings extend the earlier insight that even-aged age structures are1253

not uniquely optimal to a wider class of perennial-crop models.1254

Importantly, there is no contradiction between our findings and those of Mitra et al. (1991). The1255

different convergence properties emerge directly from the different biological assumptions about1256

yield patterns. While Mitra et al. (1991) provided a neighborhood turnpike result that applies1257

generally, they showed non-convergence specifically under monotonically increasing yields. Our1258

contribution is demonstrating finite-time convergence to optimal cycles under hump-shaped yields,1259

contrasting with their non-convergence result for the monotonic case.1260

10Towards the end of their paper, Mitra et al. use "forest" when referring to orchards. Here, we refer to their
results in terms of orchards.
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Results in forestry suggest that optimal cyclic sequences may not be a general feature of point-1261

input, point-output capital theory models. It remains to be seen whether these results carry over to1262

the point-input, flow-output setting. Our model assumes a fixed total land area with the decision1263

problem centered on allocating this area among different age classes. This approach contrasts1264

with Salo and Tahvonen (2004), who examine endogenous land allocation between forestry and1265

alternative uses. They show that cyclical patterns may vanish when land can be freely converted1266

between uses (as land moves in and out of forestry to smooth production), while adding conversion1267

costs reintroduces optimal cycles and path-dependent equilibria.1268

However, this concern is less relevant for established orchard operations for several reasons. First,1269

orchards involve substantial sunk investments in specialized infrastructure including irrigation sys-1270

tems, drainage, soil amendments, and tree establishment costs that are orchard-specific and cannot1271

be recovered through temporary conversion to alternative uses. Second, unlike annual crops, or-1272

chard establishment requires multiple years before achieving full productivity, making temporary1273

entry and exit economically prohibitive. Third, even if growers could temporarily cease harvesting1274

to smooth production (analogous to leaving land fallow), they would still face the fundamental1275

age-structure optimization problem since the trees continue aging and the optimal management of1276

existing tree cohorts remains unchanged. Additionally, Fabbri et al. (2015) has shown that cyclical1277

solutions optimal in discrete-time forestry models may not persist in continuous-time formulations.1278

However, our discrete-time approach aligns naturally with the seasonal nature of orchard harvest-1279

ing.1280

These findings have direct applications for perennial crop managers. Understanding that even-aged1281

age structures, while optimal, are not uniquely so provides flexibility in transition planning, allowing1282

growers to adapt replanting strategies to their operational constraints. Furthermore, our analysis1283

of cycle amplitude responses to economic parameters enables growers to anticipate how changes in1284

discount rates or relative productivity between age classes will affect optimal orchard structures.1285

This knowledge can inform long-term planning and help growers adapt to changing economic con-1286

ditions without sacrificing optimality. Moreover, these results suggest policies aimed at reducing1287

production volatility should focus on planning for the economic consequences of unavoidable cycles1288
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rather than attempting to eliminate cycles entirely.1289
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6 Conclusion1290

We have extended the theoretical framework for optimal management of age-structured orchards1291

by characterizing transition dynamics in the two-age-class model and developing a novel three-age-1292

class model accommodating non-monotonic yields. Our work builds upon the seminal contribution1293

of Mitra et al. (1991), who pioneered the analysis of orchards as a canonical example of point-input,1294

flow-output capital theory.1295

Returning to our central research questions, we can now provide clear answers: (1) Regarding1296

optimal replacement age, we demonstrate that it depends critically on the yield curve and dis-1297

count factor, with the even-aged three-age-class orchard being optimal under specified conditions,1298

but also showing multiple other optimal solutions exist within the cycle region. (2) On whether1299

growers should replace all trees simultaneously, our analysis reveals that partial replacement is1300

typically optimal, creating a cyclical age structure that maximizes value over time. (3) Concerning1301

the steady-state and convergence, we prove that although the even-aged orchard remains a station-1302

ary optimum, optimal dynamics are typically cyclical. In the two-age-class model, every optimal1303

sequence is contained within a two-period cycle region (which includes the even-aged orchard) in1304

at most 2 periods. In the three-age-class model, we derive a similar result showing that all optimal1305

sequences are contained within a three-period cycle region after a finite number of periods.1306

the optimal steady-state is a cyclical process rather than a fixed point, and we establish uniform1307

convergence to this cycle in at most two periods for the two-age-class model and characterize the1308

finite number of periods (at most N) for the three-age-class model.1309

Our complete characterization of transition dynamics—proving convergence to optimal cycles in1310

at most two periods for the two-age-class model and in at most N periods for the three-age-class1311

model—represents a significant advancement over previous work that either omit transitions or1312

provided only asymptotic results. Additionally, our work corrects an omission in Wan (1993),1313

whose solution applies when the aging constraint binds but does not include cases where young1314

trees are optimally replaced early.1315
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While Mitra et al. (1991) demonstrated that for monotonically increasing yields, optimal programs1316

never converge to a stationary optimal forest, we complement their findings by showing that with1317

non-monotonic yields, optimal programs converge to a cycle region in finite time. Their neigh-1318

borhood turnpike result established proximity to the even-aged orchard when the discount factor1319

is sufficiently close to one. In contrast, our convergence theorem is stronger—establishing exact1320

convergence to a set of optimal cycles for all relevant discount factors, and within a finite number1321

of periods.1322

Although our results establish strong convergence properties for perennial crops under our modeling1323

assumptions, we acknowledge that these findings may not fully generalize across all settings. As1324

noted in our discussion, research by Salo and Tahvonen (2004) and Fabbri et al. (2015) suggests that1325

optimal cycles may be sensitive to assumptions about land conversion flexibility and continuous1326

versus discrete time frameworks. Future work could explore whether their results also apply to the1327

orchards context.1328
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A Appendices1383

A.1 The running horizon algorithm1384

The running horizon algorithm approximates the solution to an infinite horizon dynamic problem1385

by calculating the solution to a sequence of finite horizon problems. This description is adapted1386

from Franklin (2013) and Salo and Tahvonen (2004). The relevant parts of their papers are included1387

in the appendix.1388

We wish to find a solution to the non-linear programming problem1389

V (x0) = max
{xt}∞

t=1

∞∑
t=0

βtu(ct) s.t. constraints1390

Numerically solving this problem directly requires approximating the value function, a computa-1391

tionally intensive and unstable process.1392

Alternatively, we can repeatedly solve the finite horizon analog of the infinite horizon problem to1393

obtain an approximation of the infinite horizon solution. The finite horizon analog is given by:1394

V T (x0) = max
{xt}T

t=1

T∑
t=0

βtu(ct) s.t. constraints1395

Solving this problem is relatively straightforward, and can be directly implemented with a non-1396

linear numerical optimization algorithm, e.g. the fmincon command in MATLAB.1397

The optimal sequence in this finite horizon problem is {x∗
t (T,x0)}T

t=1. The parentheses following1398

xt denote the dependence of the solution on the length of the finite horizon, T , and the initial1399

condition x0.1400

The running horizon algorithm generates a vector of length S, approximating the first S terms of1401

the infinite horizon problem, {x̂t}S
t=1 ≈ {x(∞,x0)

t }S
t=1. The choice of S may affect the accuracy of1402

the approximation, since errors in the approximation in the early terms will propagate to the later1403

terms. For the orchard management problem, we want to pick an S large enough for the infinite1404
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horizon approximation to reach the steady state.1405

The first term of the approximation vector is the first term of the solution to the T period problem,1406

starting from x0. That is, x̂1 = x∗
1(T,x0). The second term of the approximation vector is generated1407

by solving the T period problem, using x̂1 as the initial condition, and taking the first term of the1408

solution to this finite horizon problem. That is, x̂2 = x∗
1(T, x̂1). The remaining S − 2 terms of the1409

approximation vector are generated in a similar manner. That is, x̂s = x∗
1(T, x̂s−1).1410

This algorithm works because the first period solution to the finite horizon problem approaches the1411

first period solution to the infinite horizon problem as the finite horizon approaches infinity.1412

lim
T →∞

x(T,x0)
1 = x(∞,x0)

11413

This occurs because, with positive discounting, the behavior of the finite horizon problem at the1414

terminal time has a diminishing effect on the first period choice as the horizon is extended.1415
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A.2 Comparison of yield curves between this model and Proposition 5.2 in1416

Mitra et al. (1991).1417

Figure 12a is a graphical representation of the set of three-age-class yield curves. The yield of mature1418

trees is normalized to one, with the relative yield of young trees on the horizontal axis, and the1419

relative yield of all trees on the vertical axis. Figure 12b shows a specific case of the general optimal1420

replacement age figure (Figure 2), highlighting the set of three-age-class yield curves applicable to1421

the asymptotic Turnpike theorem in Mitra et al. (1991) (Proposition 5.2), represented by the gray1422

square, and the set of yield curves that can be analyzed using propositions 4.1 and 4.2 in our1423

three-age-class model. However, the analysis of Mitra et al. (1991) is applicable to yield curves1424

with arbitrarily many age-classes, so long as yields are (weakly) monotonically increasing, whereas1425

our analysis is restricted to 3-age-class yield curves.1426

(a) The space of three-age-class yield curves, with fm

normalized to 1.
(b) The Faustmann age as a function of the yield
curve. The gray square represents the yield curves
studied by Mitra et al. (1991). The light green
(i∗ = o) and dark green (i∗ = o) regions represent
the non-monotonic yield curves that can additionally
be analyzed by our model.

Figure 11: A comparison of yield curves studied in this model and Proposition 5.2 in Mitra et al.
(1991).

76



fy

fo

0.5

0.5

1

1

1.5

1.5

2

2

(a) The space of three-age-class yield curves, with fm

normalized to 1.

fy

fo

0.5

0.5

1

1

1.5

1.5

2

2

i∗ = o

i∗ = y

i∗ = m

(b) The Faustmann age as a function of the yield
curve.

Figure 12: A comparison of yield curves studied in this model and Proposition 5.2 in Mitra et al.
(1991). In Figure (b), the lined square represents the three-age-class yield curves admissable in their
Proposition 5.2. The dotted regions represent the non-monotonic yield curves that can additionally
be analyzed by our model. The extent of the i∗ = 3 region depends on the discount factor (see
Figure 2).

A.3 Proofs1427

A.3.1 Proof of proposition 3.11428

Proof of proposition 3.1 (page 14). First, we will show that if a two-period cycle is optimal, then1429

β ≤ u′(ct+1)
u′(ct) ≤ 1

β (necessity).1430

From equations (2b) and (2c) and assuming an interior allocation using all available land, we find1431

an expression for λt:1432

λt = β(u′(ct+1)(fo − fy) − λt+1)1433

Shifting this equation forward by one period gives an expression for λt+1:1434

λt+1 = β(u′(ct+2)(fo − fy) − λt+2)1435
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Substituting the expression for λt+1 into the expression for λt and assuming that there is a two-1436

period cycle, i.e., xyt = xy,t+2, xot = xo,t+2, gives:1437

λt = β(fo − fy)(u′(ct+1) − βu′(ct)) + β2λt1438

For the two-period cycle to be optimal, λt must be non-negative. Rearranging gives:1439

λt = β(fo − fy)
1 − β2 (u′(ct+1) − βu′(ct))1440

For this expression to be non-negative, we must have:1441

u′(ct+1) − βu′(ct) ≥ 0 ⇒ u′(ct+1)
u′(ct)

≥ β1442

Similarly for λt+1:1443

u′(ct) − βu′(ct+1) ≥ 0 ⇒ u′(ct+1)
u′(ct)

≤ 1
β

1444

Combining these inequalities:1445

β ≤ u′(ct+1)
u′(ct)

≤ 1
β

1446

Thus, if a two-period cycle is optimal, this condition must hold.1447

Now, we will show that if β ≤ u′(ct+1)
u′(ct) ≤ 1

β , then a two-period cycle is optimal (sufficiency).1448

Suppose we have a land allocation sequence {xyt, xot}∞
t=1 that follows a two-period cycle and satisfies1449

β ≤ u′(ct+1)
u′(ct) ≤ 1

β for all t. We need to show that there exists a sequence of non-negative Lagrange1450

multipliers that, together with this land allocation, satisfy the KKT conditions.1451
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Using the inequality u′(ct+1)
u′(ct) ≥ β, we define:1452

λt = β(fo − fy)
1 − β2 (u′(ct+1) − βu′(ct))1453

Since fo > fy and u′(ct+1) − βu′(ct) ≥ 0, we have λt ≥ 0.1454

Similarly, using u′(ct+1)
u′(ct) ≤ 1

β , we have λt+1 ≥ 0.1455

With these non-negative values for λt and λt+1, the KKT conditions are satisfied, making the1456

two-period cycle optimal.1457

Therefore, if β ≤ u′(ct+1)
u′(ct) ≤ 1

β , then a two-period cycle is optimal, completing the proof of both1458

necessity and sufficiency.1459

A.3.2 Proof of corollary 11460

Proof of corollary 1 (page 14). For each period in a even-aged orchard, half of the land is allocated1461

to young trees and half to old trees. Since the land allocation is the same every period, the1462

production is the same every period ct = ct+1.1463

Applying this production path to the inequality in Proposition 3.1 gives1464

β ≤ u′(ct)
u′(ct)

≤ 1
β

⇒ β ≤ 1 ≤ 1
β

1465

which is true for all 0 < β ≤ 1. Hence the even-aged orchard is a solution to the two-age-class1466

orchard management problem.1467

A.3.3 Proof of proposition 3.21468

Proof of proposition 3.2 (page 18). Define the function g(.) as1469

g(ϕ; β, fy, fo, L) =
u′(c(L

2 − ϕ))
u′(c(L

2 + ϕ))
− β = 01470

=
u′(L

2 (fy + fo) + (fo − fy)ϕ)
u′(L

2 (fy + fo) − (fo − fy)ϕ)
− β = 01471
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Using the implicit function theorem, the partial derivative of ϕ with respect to any parameter α is1472

∂ϕ

∂α
=

− ∂g
∂α

∂g
∂ϕ

1473

Let c(xy) = fy xy + fo (L− xy). First, compute the denominator1474

∂g

∂ϕ
=

(fo − fy)
[
u′(c(L

2 + ϕ))u′′(c(L
2 − ϕ)) + u′(c(L

2 − ϕ))u′′(c(L
2 + ϕ))

]
u′(c(L

2 + ϕ))21475

∂g
∂ϕ < 0 since u′′(.) < 0. So sign( ∂ϕ

∂α) = sign( ∂g
∂α).1476

Computing the sign of ∂ϕ
∂β gives1477

sign(∂ϕ
∂β

) = sign(−1) (< 0)1478

Computing ∂ϕ
∂fy

gives1479

∂ϕ

∂fy
=

(L
2 − ϕ)u′(c(L

2 + ϕ))u′′(c(L
2 − ϕ)) − (L

2 + ϕ)u′(c(L
2 − ϕ))u′′(c(L

2 + ϕ))
u′(c(L

2 + ϕ))21480

1481

sign
(
∂ϕ

∂fy

)
> 0 ⇔(L2 − ϕ)u′(c(L2 − ϕ))u′′(c(L2 + ϕ)) − (L2 + ϕ)u′(c(L2 + ϕ))u′′(c(L2 − ϕ)) > 01482

u′(c(L2 − ϕ))u′′(c(L2 + ϕ)) >
(L

2 + ϕ)
(L

2 − ϕ)
u′(c(L2 + ϕ))u′′(c(L2 − ϕ))1483

u′(c(L
2 − ϕ))u′′(c(L

2 + ϕ))
u′(c(L

2 + ϕ))u′′(c(L
2 − ϕ))

<
(L

2 + ϕ)
(L

2 − ϕ)
(Since u′′(.) < 0)1484

1485

A(c(L
2 + ϕ))

A(c(L
2 − ϕ))

<
(L

2 + ϕ)
(L

2 − ϕ)
1486

Where A(c) = −u′′(c)
u′(c) measures the preference for consumption smoothing.1487
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Computing ∂ϕ
∂fo

gives1488

∂ϕ

∂fo
=

(L
2 + ϕ)u′(c(L

2 + ϕ))u′′(c(L
2 − ϕ)) − (L

2 − ϕ)u′(c(L
2 − ϕ))u′′(c(L

2 + ϕ))
u′(c(L

2 + ϕ))21489

1490

sign
(
∂ϕ

∂fo

)
> 0 ⇔(L2 + ϕ)u′(c(L2 − ϕ))u′′(c(L2 + ϕ)) − (L2 − ϕ)u′(c(L2 + ϕ))u′′(c(L2 − ϕ)) > 01491

u′(c(L2 − ϕ))u′′(c(L2 + ϕ)) >
(L

2 − ϕ)
(L

2 + ϕ)
u′(c(L2 + ϕ))u′′(c(L2 − ϕ))1492

u′(c(L
2 − ϕ))u′′(c(L

2 + ϕ))
u′(c(L

2 + ϕ))u′′(c(L
2 − ϕ))

<
(L

2 − ϕ)
(L

2 + ϕ)
(Since u′′(.) < 0)1493

1494

A(c(L
2 + ϕ))

A(c(L
2 − ϕ))

<
(L

2 − ϕ)
(L

2 + ϕ)
1495

Where A(c) = −u′′(c)
u′(c) measures the preference for consumption smoothing.1496

Computing ∂ϕ
∂L gives1497

∂ϕ

∂L
=

(fy + fo)
(
u′(c(L

2 + ϕ))u′′(c(L
2 − ϕ)) − u′(c(L

2 − ϕ))u′′(c(L
2 + ϕ))

)
2u′(c(L

2 + ϕ))21498

sign
(
∂ϕ

∂L

)
> 0 ⇔u′(c(L2 + ϕ))u′′(c(L2 − ϕ)) − u′(c(L2 − ϕ))u′′(c(L2 + ϕ)) > 01499

u′(c(L2 + ϕ))u′′(c(L2 − ϕ)) > u′(c(L2 − ϕ))u′′(c(L2 + ϕ))1500

u′(c(L
2 + ϕ))u′′(c(L

2 − ϕ))
u′(c(L

2 − ϕ))u′′(c(L
2 + ϕ))

< 1 (Since u′′(.) < 0)1501

1502

A(c(L
2 + ϕ))

A(c(L
2 − ϕ))

> 11503

1504
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A.3.4 Proof of proposition 3.31505

Proof of proposition 3.3 (page 20). Define ϕ, the maximum amplitude of the cycle region, as in1506

equation (4). Assume that the land constraint binds every period, so we can define a land allocation1507

as xt = (L − xo,t, xo,t), where xo,t is the area of land allocated to old trees in period t. Let1508

xo,t+1 = P (xo,t) be the function that returns the optimal area of old trees in period t+ 1 given the1509

area of old trees in period t. Assume that it exists and is continuous.1510

We will consider the optimal transition for three regions in xo,t∈[0, L]. Let region one be [0, L
2 −ϕ),1511

region two be [L
2 −ϕ, L

2 +ϕ], and region three be (L
2 +ϕ,L]. We will construct the optimal transition1512

function piecewise across these three regions1513

P (xo,t) =



P1(xo,t) for xo,t∈[0, L
2 − ϕ)

P2(xo,t) for xo,t∈[L
2 − ϕ, L

2 + ϕ]

P3(xo,t) for xo,t∈(L
2 + ϕ,L]

1514

We know from proposition 3.1 that P2(xo,t) = L− xo,t. We will begin by showing that P3(xo,t) =1515

L− xo,t as well, and then use this result to show that P1(xo,t) = L
2 − ϕ, thus finding the piecewise1516

definition of P (xo,t).1517

The optimal transition function will depend on the optimal value of the aging constraint multiplier,1518

λt. If λt > 0, then the aging constraint binds, and xo,t+1 = L− xo,t. On the other hand, if λt = 0,1519

then xo,t+1 ≤ L− xo,t and we will need to pin down its value.1520

We will show that for xo,t in region three, starting with λt = 0 implies there is no solution to the1521

KKTs in period t+ 1. Therefore λt > 0 for xo,t in region three.1522

Recall the Euler equation1523

λt = β
(
u′(ct+1)fo − u′(ct+1)fy − λt+1)

)
1524

Assume xo,t∈(L
2 + ϕ,L] and λt = 0. Therefore λt+1 = βu′(ct+1)(fo − fy) > 0. Iterating the Euler1525
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equation and using this value for λt+1 gives an expression for λt+21526

λt+2 = (fo − fy)
(
u′(ct+2) − 1

β
u′(ct+1)

)
1527

We must have λt+2 ≥ 0 to satisfy the KKT conditions.1528

λt+2 ≥ 01529

⇒ u′(ct+2) ≥ 1
β
u′(ct+1)1530

⇒ xo,t+2 < xo,t+1 < xo,t (with strict inequality because β < 1))1531

This is incompatible with λt = 0 and λt+1 > 0, which imply that xo,t+2 = L − xo,t+1 ≥ xo,t.1532

Therefore xo,t∈(L
2 + ϕ,L] implies λt > 0, and P3(xo,t) = L− xo,t.1533

We now turn to characterizing P1(xo,t). For xo,t in region one, we begin by showing that assuming1534

λt > 0 implies there is no solution to the KKTs in period t+1. We then find the optimal transition1535

for xo,t+1 ≤ L− xo,t given λt = 0.1536

For xo,t in region one, if λt > 0, then xo,t+1 = L− xo,t, which is in region three. From our previous1537

result, xo,t+2 = P3(xo,t+1) = xo,t, which implies a cycle. However, by proposition 1, the only cycles1538

consistent with the KKTs are those with xo,t, xo,t+1∈[L
2 − ϕ, L

2 + ϕ]. Therefore, λt = 0 in region1539

one.1540

Finally, for xo,t in region one, let λt = 0, which implies xo,t+1 ≤ L − xo,t ∈ (region three), so1541

λt+1 > 0. Further, from before, xo,t+1 in region three, implies that λt+2 = 0. Using the Euler1542
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equation and iterating by one period we get an expression for λt+2:1543

(fo − fy)
(
u′(ct+2) − 1

β
u′(ct+1)

)
= 01544

⇒ u′(ct+1)
u′(ct+2) = β1545

⇒ ct+1 = (fy(L2 − ϕ) + fo(L2 + ϕ))1546

⇒ xo,t+1 = L

2 + ϕ1547

So the only allocation of old trees in period t+ 1 consistent with the KKTs when xo,t is in region1548

one is xo,t+1 = L
2 +ϕ. Hence P1(xo,t) = L

2 +ϕ, a constant. The land allocated to old trees in period1549

t + 1 is independent of the allocation of old trees in period t, so long as it is in region one. Any1550

allocation in region one moves to the upper boundary of region two in the next period, and then1551

remains in region two thenceforth.1552

The optimal transition rule is thus1553

P (xo,t) =



L
2 + ϕ for xo,t∈[0, L

2 − ϕ)

L− xo,t for xo,t∈[L
2 − ϕ, L

2 + ϕ]

L− xo,t for xo,t∈(L
2 + ϕ,L]

1554

as shown in figure 5.1555

A.4 Notation used in the three-age-class model1556

u(x) (also u(ct)): Instantaneous utility of allocation x. (Section 4, page 23)1557

xt: Allocation vector at time t; (xyt, xmt, xot). (Section 4, page 23)1558

V (xt): Infinite-horizon value function evaluated at allocation xt. (Section 4, page 23)1559

xyt: Area of young trees in period t. (Section 4, page 23)1560

xmt: Area of mature trees in period t. (Section 4, page 23)1561
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xot: Area of old trees in period t. (Section 4, page 23)1562

β: Single-period discount factor. (Section 4, page 23)1563

L: Total land area (normalised to 1). (Section 4, page 23)1564

ct: Period-t harvest/consumption; ct := fyxyt + fmxmt + foxot. (Section 4, page 23)1565

fi (i∈{y,m, o}): Yield per unit land for age-class i. (Section 4, page 23)1566

f := (fy, fm, fo): Yield vector. (Section ??, page ??)1567

λ1t: Multiplier on xm,t+1 ≤ xyt. (Section 4, page 23)1568

λ2t: Multiplier on xo,t+1 ≤ xmt. (Section 4, page 23)1569

ψt: Multiplier on the total-land constraint. (Section 4, page 23)1570

sit: Multiplier on xit ≥ −0. (Section 4, page 23)1571

F(xy, xm, xo) := (xo, xy, xm): Pure biological ageing map; Fk is its kth iterate. (Section ??, page1572

??)1573

∆2: Feasible-allocation simplex {(xy, xm, xo) : xy + xm + xo = 1, xi ≥ 0}. (Section ??, page ??)1574

i∗: Faustmann optimal replacement age for a single tree (equal to o here). (Section ??, page ??)1575

x̄ := (1
3 ,

1
3 ,

1
3): Balanced allocation (one-third in each class). (Section ??, page ??)1576

U := {x ∈ ∆2 : ∥x − x̄∥ < ε}: Neighbourhood of x̄ yielding local 3-cycles. (Section ??, page ??)1577

∆1,∆2: Yield-difference combinations used to sign λ1 and λ2. (Section ??, page ??)1578

K0: Cycle region—allocations whose optimal path is a stationary three-period cycle. (Section ??,1579

page ??)1580

Γ(xt): Full feasible transition set from xt. (Section ??, page ??)1581

F (xt,xt+1) := u(xt) + βu(xt+1): Two-period (stage-return) payoff. (Section ??, page ??)1582

Γr(xt): Restricted transition set when only mature trees may be replaced. (Section 2, page 34)1583
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M(xm) := {x ∈ ∆2 : 0 ≤ xo ≤ 1 − xm}: Iso-mature line at level xm. (Section 3, page 34)1584

R(xm): Optimal old-tree share conditional on xm; solves the ridge FOCs. (Section ??, page ??)1585

ψ1, ψ2: Complementary-slackness multipliers appearing in the ridge conditions. (Section ??, page1586

??)1587

xR(xm) := (xm, R(xm)): Point on the ridge with mature share xm. (Section ??, page ??)1588

R: Entire ridge {xR(xm) :≤ xm ≤ 1}. (Section 3, page 35)1589

R1,R2,R3,R4: Four mutually exclusive sub-segments of R. (Section 4.3.5, page 47)1590

R1: The set of allocations on the ridge of the ridge whose mature elements are between x̃m and 1,1591

formally, {x ∈ R : xm∈(x̃m, 1]}.1592

R2: The set of allocations on the ridge whose mature elements are between x̄m and x̃m, formally,1593

{x ∈ R : xm∈(x̄m, x̃m]}.1594

R3: The set of allocations on the ridge whose mature elements are between r̄ and x̄m, formally,1595

{x ∈ R : xm∈[R(x̄m), x̄m]}.1596

R4: The set of allocations on the ridge whose mature elements are between 0 and r̄, formally,1597

{x ∈ R : xm∈[0, R(x̄m))}.1598

x̄c := (x̄m, r̄): Ridge point with that maximum mature share. (Section 4.3.6, page 51)1599

x̄m := max{xm : (xm, xo) ∈ K0}: Maximum mature share inside K0. (Section ??, page ??)1600

x̃ := (x̃m, R(x̃m)): Point where ridge meets xo = 0. (Section 11, page 47)1601

x̃m: Smallest xm with R(x̃m) = 0 (ridge touches xo = 0). (Section 4.3.7, page 55)1602

Ki (i ≥ 1): Sets that can reach Ki−1 in one step and are disjoint from earlier Kj . (Section 6, page1603

44)1604

bd(Kij) := Ki ∩Kj : Boundary between Ki and Kj . (Section 4.3.6, page 49)1605

ξξξ(x): Optimal next-period allocation chosen from Γr(x). (Section 16, page 37)1606
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ξξξm(x): Mature-tree component of ξξξ(x). (Section 13, page 51)1607

ξξξk(x): Allocation after k optimal transitions; ξ3(xt) and ξ3
m(xt) are the full allocation and its1608

mature component after three steps. (Section 21, page 57)1609

N1, N2: Integer bounds on convergence time from R2 and from R4 ∩K5. (Section 4.2, page 32)1610

δc, δ1, δ2, δ
d: Positive constants introduced in convergence lemmas. (Section 12, page 50)1611

q(x) :=
⌈xm − x̄m

δ1

⌉
: Integer distance of x ∈ R2 above x̄m. (Section 4.3.6, page 52)1612
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